A Morse lemma at infinity for Yamabe type problems on domains

Mohamed Ben Ayed; Hichem Chtioui; Mokhless Hammami

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 4, page 543-577
  • ISSN: 0294-1449

How to cite

top

Ben Ayed, Mohamed, Chtioui, Hichem, and Hammami, Mokhless. "A Morse lemma at infinity for Yamabe type problems on domains." Annales de l'I.H.P. Analyse non linéaire 20.4 (2003): 543-577. <http://eudml.org/doc/78589>.

@article{BenAyed2003,
author = {Ben Ayed, Mohamed, Chtioui, Hichem, Hammami, Mokhless},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Morse lemma; elliptic problems with critical Sobolev exponent},
language = {eng},
number = {4},
pages = {543-577},
publisher = {Elsevier},
title = {A Morse lemma at infinity for Yamabe type problems on domains},
url = {http://eudml.org/doc/78589},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Ben Ayed, Mohamed
AU - Chtioui, Hichem
AU - Hammami, Mokhless
TI - A Morse lemma at infinity for Yamabe type problems on domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 4
SP - 543
EP - 577
LA - eng
KW - Morse lemma; elliptic problems with critical Sobolev exponent
UR - http://eudml.org/doc/78589
ER -

References

top
  1. [1] Ahmedou M., El Mehdi K., Computation of the difference of topology at infinity for Yamabe-type problem on annuli-domains, Duke Math. J.94 (1998), I: 215–229, II: 231–255. Zbl0966.35043MR1638658
  2. [2] Ahmedou M., El Mehdi K., On an elliptic problem with critical nonlinearity in expanding annuli, J. Funct. Anal.163 (1999) 29-62. Zbl0954.35068MR1682847
  3. [3] Bahri A., Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., 182, Longman, Harlow, 1989. Zbl0676.58021MR1019828
  4. [4] Bahri A., An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J.281 (1996) 323-466. Zbl0856.53028MR1395407
  5. [5] A. Bahri, Scalar-curvature problems in high dimension spheres, to appear. 
  6. [6] Bahri A., Coron J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology on the domain, Comm. Pure Appl. Math.41 (1988) 253-294. Zbl0649.35033MR929280
  7. [7] Bahri A., Coron J.M., The scalar curvature problem on the standard three-dimensional sphere, J. Func. Anal.95 (1991) 106-172. Zbl0722.53032MR1087949
  8. [8] Bahri A., Li Y., Rey O., On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations3 (1995) 67-94. Zbl0814.35032MR1384837
  9. [9] Ben Ayed M., Chen Y., Chtioui H., Hammami M., On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J.84 (1996) 633-667. Zbl0862.53034MR1408540
  10. [10] Ben Ayed M., Chtioui H., Hammami M., The scalar-curvature problem on higher dimensional spheres, Duke Math. J.93 (1998) 379-424. Zbl0977.53035MR1625991
  11. [11] Brezis H., Coron J.M., Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal.89 (1985) 21-56. Zbl0584.49024MR784102
  12. [12] Rey O., The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
  13. [13] Sacks J., Uhlenbeck K., The existence of minimal immersion of 2-spheres, Ann. Math. (2)113 (1981) 1-24. Zbl0462.58014MR604040
  14. [14] Sedlacek S., A direct method for minimizing the Yang–Mills functional over 4-manifolds, Comm. Math. Phys.86 (1982) 515-527. Zbl0506.53016MR679200
  15. [15] Struwe M., A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z.187 (1984) 511-517. Zbl0535.35025MR760051
  16. [16] Taubes C.H., Path-connected Yang–Mills moduli spaces, J. Differential Geom.19 (1984) 337-392. Zbl0551.53040MR755230

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.