A Morse lemma at infinity for Yamabe type problems on domains
Mohamed Ben Ayed; Hichem Chtioui; Mokhless Hammami
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 4, page 543-577
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBen Ayed, Mohamed, Chtioui, Hichem, and Hammami, Mokhless. "A Morse lemma at infinity for Yamabe type problems on domains." Annales de l'I.H.P. Analyse non linéaire 20.4 (2003): 543-577. <http://eudml.org/doc/78589>.
@article{BenAyed2003,
author = {Ben Ayed, Mohamed, Chtioui, Hichem, Hammami, Mokhless},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Morse lemma; elliptic problems with critical Sobolev exponent},
language = {eng},
number = {4},
pages = {543-577},
publisher = {Elsevier},
title = {A Morse lemma at infinity for Yamabe type problems on domains},
url = {http://eudml.org/doc/78589},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Ben Ayed, Mohamed
AU - Chtioui, Hichem
AU - Hammami, Mokhless
TI - A Morse lemma at infinity for Yamabe type problems on domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 4
SP - 543
EP - 577
LA - eng
KW - Morse lemma; elliptic problems with critical Sobolev exponent
UR - http://eudml.org/doc/78589
ER -
References
top- [1] Ahmedou M., El Mehdi K., Computation of the difference of topology at infinity for Yamabe-type problem on annuli-domains, Duke Math. J.94 (1998), I: 215–229, II: 231–255. Zbl0966.35043MR1638658
- [2] Ahmedou M., El Mehdi K., On an elliptic problem with critical nonlinearity in expanding annuli, J. Funct. Anal.163 (1999) 29-62. Zbl0954.35068MR1682847
- [3] Bahri A., Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., 182, Longman, Harlow, 1989. Zbl0676.58021MR1019828
- [4] Bahri A., An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J.281 (1996) 323-466. Zbl0856.53028MR1395407
- [5] A. Bahri, Scalar-curvature problems in high dimension spheres, to appear.
- [6] Bahri A., Coron J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology on the domain, Comm. Pure Appl. Math.41 (1988) 253-294. Zbl0649.35033MR929280
- [7] Bahri A., Coron J.M., The scalar curvature problem on the standard three-dimensional sphere, J. Func. Anal.95 (1991) 106-172. Zbl0722.53032MR1087949
- [8] Bahri A., Li Y., Rey O., On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations3 (1995) 67-94. Zbl0814.35032MR1384837
- [9] Ben Ayed M., Chen Y., Chtioui H., Hammami M., On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J.84 (1996) 633-667. Zbl0862.53034MR1408540
- [10] Ben Ayed M., Chtioui H., Hammami M., The scalar-curvature problem on higher dimensional spheres, Duke Math. J.93 (1998) 379-424. Zbl0977.53035MR1625991
- [11] Brezis H., Coron J.M., Convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal.89 (1985) 21-56. Zbl0584.49024MR784102
- [12] Rey O., The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990) 1-52. Zbl0786.35059MR1040954
- [13] Sacks J., Uhlenbeck K., The existence of minimal immersion of 2-spheres, Ann. Math. (2)113 (1981) 1-24. Zbl0462.58014MR604040
- [14] Sedlacek S., A direct method for minimizing the Yang–Mills functional over 4-manifolds, Comm. Math. Phys.86 (1982) 515-527. Zbl0506.53016MR679200
- [15] Struwe M., A global compactness result for elliptic boundary value problem involving limiting nonlinearities, Math. Z.187 (1984) 511-517. Zbl0535.35025MR760051
- [16] Taubes C.H., Path-connected Yang–Mills moduli spaces, J. Differential Geom.19 (1984) 337-392. Zbl0551.53040MR755230
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.