Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations
Gui-Qiang Chen; Benoît Perthame
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 4, page 645-668
- ISSN: 0294-1449
Access Full Article
topHow to cite
topChen, Gui-Qiang, and Perthame, Benoît. "Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations." Annales de l'I.H.P. Analyse non linéaire 20.4 (2003): 645-668. <http://eudml.org/doc/78592>.
@article{Chen2003,
author = {Chen, Gui-Qiang, Perthame, Benoît},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {kinetic solutions; entropy solutions; kinetic formulation; convection-diffusion; non-isotropic diffusion; chain rule type condition},
language = {eng},
number = {4},
pages = {645-668},
publisher = {Elsevier},
title = {Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations},
url = {http://eudml.org/doc/78592},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Chen, Gui-Qiang
AU - Perthame, Benoît
TI - Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 4
SP - 645
EP - 668
LA - eng
KW - kinetic solutions; entropy solutions; kinetic formulation; convection-diffusion; non-isotropic diffusion; chain rule type condition
UR - http://eudml.org/doc/78592
ER -
References
top- [1] Bénilan P., Carrillo J., Wittbold P., Renormalized entropy solutions of scalar conservation laws, Ann. Sc. Norm. Sup. Pisa29 (2000) 313-327. Zbl0965.35021MR1784177
- [2] Bouchut F., Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Ration. Mech. Anal.157 (2001) 75-90. Zbl0979.35032MR1822415
- [3] Brenier Y., Résolution d'équations d'évolution quasilinéaires en dimensions N d'espace à l'aide d'équations linéaires en dimensions N+1, J. Differential Equations50(3) (1982) 375-390. Zbl0549.35055MR723577
- [4] Brézis H., Crandall M.G., Uniqueness of solutions of the initial-value problem for ut−Δϕ(u)=0, J. Math. Pure Appl. (9)58 (2) (1979) 153-163. Zbl0408.35054
- [5] Bustos M.C., Concha F., Bürger R., Tory E.M., Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory, Kluwer Academic, Dordrecht, 1999. Zbl0936.76001MR1747460
- [6] Carrillo J., Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal.147 (1999) 269-361. Zbl0935.35056MR1709116
- [7] Chavent G., Jaffre J., Mathematical Models and Finite Elements for Reservoir Simulation, North Holland, Amsterdam, 1986. Zbl0603.76101
- [8] Chen G.-Q., DiBenedetto E., Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations, SIAM J. Math. Anal.33 (2001) 751-762. Zbl1027.35080MR1884720
- [9] Cockburn B., Dawson C., Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimension, in: MAFELAP 1999 (Uxbridge), The Mathematics of Finite Elements and Applications, 10, Elsevier, Oxford, 1999, pp. 225-238. Zbl0960.65107MR1801979
- [10] DiBenedetto E., Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl.130 (1982) 131-176. Zbl0503.35018MR663969
- [11] Douglis J., Dupont T., Ewing R., Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer. Anal.16 (1979) 503-522. Zbl0411.65064MR530483
- [12] Espedal M.S., Fasano A., Mikelić A., Filtration in Porous Media and Industrial Applications, Lecture Notes in Math., 1734, Springer-Verlag, Berlin, 2000. Zbl0954.00053
- [13] Eymard R., Gallouët T., Herbin R., Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation, Chinese Ann. Math. Ser. B16 (1995) 1-14. Zbl0830.35077MR1338923
- [14] R. Eymard, T. Gallouët, R. Herbin, A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Preprint, 2001. Zbl1005.65099MR1917365
- [15] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [16] Gilding B.H., Improved theory for a nonlinear degenerate parabolic equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci.16 (4) (1989) 165-224. Zbl0702.35140MR1041895
- [17] Karlsen K.H., Risebro N.H., On convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, 35 (2) (2001) 239-270. Zbl1032.76048MR1825698
- [18] Kruzhkov S., First order quasilinear equations with several space variables, Mat. Sbornik123 (1970) 228-255, Engl. Transl.: , Math. USSR Sb.10 (1970) 217-273. Zbl0215.16203
- [19] Lions P.-L., Perthame B., Tadmor E., Formulation cinétique des lois de conservation scalaires multidimensionnelles, C. R. Acad. Sci. Paris, Série I Math.312 (1991) 97-102. Zbl0729.49007MR1086510
- [20] Lions P.-L., Perthame B., Tadmor E., A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc.7 (1994) 169-191. Zbl0820.35094MR1201239
- [21] Perthame B., Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pure Appl.77 (1998) 1055-1064. Zbl0919.35088MR1661021
- [22] B. Perthame, Kinetic Formulations of Conservation Laws, Oxford Univ. Press, Oxford (to appear). Zbl1030.35002MR2064166
- [23] Perthame B., Bouchut F., Kruzhkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc.350 (1998) 2847-2870. Zbl0955.65069MR1475677
- [24] Volpert A.I., Hudjaev S.I., Cauchy's problem for degenerate second order quasilinear parabolic equations, Mat. Sbornik78 (120) (1969) 374-396, Engl. Transl.: , Math. USSR Sb.7 (3) (1969) 365-387. Zbl0191.11603MR264232
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.