Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations

Gui-Qiang Chen; Benoît Perthame

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 4, page 645-668
  • ISSN: 0294-1449

How to cite

top

Chen, Gui-Qiang, and Perthame, Benoît. "Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations." Annales de l'I.H.P. Analyse non linéaire 20.4 (2003): 645-668. <http://eudml.org/doc/78592>.

@article{Chen2003,
author = {Chen, Gui-Qiang, Perthame, Benoît},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {kinetic solutions; entropy solutions; kinetic formulation; convection-diffusion; non-isotropic diffusion; chain rule type condition},
language = {eng},
number = {4},
pages = {645-668},
publisher = {Elsevier},
title = {Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations},
url = {http://eudml.org/doc/78592},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Chen, Gui-Qiang
AU - Perthame, Benoît
TI - Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 4
SP - 645
EP - 668
LA - eng
KW - kinetic solutions; entropy solutions; kinetic formulation; convection-diffusion; non-isotropic diffusion; chain rule type condition
UR - http://eudml.org/doc/78592
ER -

References

top
  1. [1] Bénilan P., Carrillo J., Wittbold P., Renormalized entropy solutions of scalar conservation laws, Ann. Sc. Norm. Sup. Pisa29 (2000) 313-327. Zbl0965.35021MR1784177
  2. [2] Bouchut F., Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Ration. Mech. Anal.157 (2001) 75-90. Zbl0979.35032MR1822415
  3. [3] Brenier Y., Résolution d'équations d'évolution quasilinéaires en dimensions N d'espace à l'aide d'équations linéaires en dimensions N+1, J. Differential Equations50(3) (1982) 375-390. Zbl0549.35055MR723577
  4. [4] Brézis H., Crandall M.G., Uniqueness of solutions of the initial-value problem for ut−Δϕ(u)=0, J. Math. Pure Appl. (9)58 (2) (1979) 153-163. Zbl0408.35054
  5. [5] Bustos M.C., Concha F., Bürger R., Tory E.M., Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory, Kluwer Academic, Dordrecht, 1999. Zbl0936.76001MR1747460
  6. [6] Carrillo J., Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal.147 (1999) 269-361. Zbl0935.35056MR1709116
  7. [7] Chavent G., Jaffre J., Mathematical Models and Finite Elements for Reservoir Simulation, North Holland, Amsterdam, 1986. Zbl0603.76101
  8. [8] Chen G.-Q., DiBenedetto E., Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations, SIAM J. Math. Anal.33 (2001) 751-762. Zbl1027.35080MR1884720
  9. [9] Cockburn B., Dawson C., Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimension, in: MAFELAP 1999 (Uxbridge), The Mathematics of Finite Elements and Applications, 10, Elsevier, Oxford, 1999, pp. 225-238. Zbl0960.65107MR1801979
  10. [10] DiBenedetto E., Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl.130 (1982) 131-176. Zbl0503.35018MR663969
  11. [11] Douglis J., Dupont T., Ewing R., Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer. Anal.16 (1979) 503-522. Zbl0411.65064MR530483
  12. [12] Espedal M.S., Fasano A., Mikelić A., Filtration in Porous Media and Industrial Applications, Lecture Notes in Math., 1734, Springer-Verlag, Berlin, 2000. Zbl0954.00053
  13. [13] Eymard R., Gallouët T., Herbin R., Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation, Chinese Ann. Math. Ser. B16 (1995) 1-14. Zbl0830.35077MR1338923
  14. [14] R. Eymard, T. Gallouët, R. Herbin, A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Preprint, 2001. Zbl1005.65099MR1917365
  15. [15] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  16. [16] Gilding B.H., Improved theory for a nonlinear degenerate parabolic equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci.16 (4) (1989) 165-224. Zbl0702.35140MR1041895
  17. [17] Karlsen K.H., Risebro N.H., On convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, 35 (2) (2001) 239-270. Zbl1032.76048MR1825698
  18. [18] Kruzhkov S., First order quasilinear equations with several space variables, Mat. Sbornik123 (1970) 228-255, Engl. Transl.: , Math. USSR Sb.10 (1970) 217-273. Zbl0215.16203
  19. [19] Lions P.-L., Perthame B., Tadmor E., Formulation cinétique des lois de conservation scalaires multidimensionnelles, C. R. Acad. Sci. Paris, Série I Math.312 (1991) 97-102. Zbl0729.49007MR1086510
  20. [20] Lions P.-L., Perthame B., Tadmor E., A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc.7 (1994) 169-191. Zbl0820.35094MR1201239
  21. [21] Perthame B., Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pure Appl.77 (1998) 1055-1064. Zbl0919.35088MR1661021
  22. [22] B. Perthame, Kinetic Formulations of Conservation Laws, Oxford Univ. Press, Oxford (to appear). Zbl1030.35002MR2064166
  23. [23] Perthame B., Bouchut F., Kruzhkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc.350 (1998) 2847-2870. Zbl0955.65069MR1475677
  24. [24] Volpert A.I., Hudjaev S.I., Cauchy's problem for degenerate second order quasilinear parabolic equations, Mat. Sbornik78 (120) (1969) 374-396, Engl. Transl.: , Math. USSR Sb.7 (3) (1969) 365-387. Zbl0191.11603MR264232

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.