Gravity solitary waves with polynomial decay to exponentially small ripples at infinity
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 4, page 669-704
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLombardi, E., and Iooss, G.. "Gravity solitary waves with polynomial decay to exponentially small ripples at infinity." Annales de l'I.H.P. Analyse non linéaire 20.4 (2003): 669-704. <http://eudml.org/doc/78593>.
@article{Lombardi2003,
author = {Lombardi, E., Iooss, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {existence; analytic continuation; exponentially small upper bounds; oscillatory integrals},
language = {eng},
number = {4},
pages = {669-704},
publisher = {Elsevier},
title = {Gravity solitary waves with polynomial decay to exponentially small ripples at infinity},
url = {http://eudml.org/doc/78593},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Lombardi, E.
AU - Iooss, G.
TI - Gravity solitary waves with polynomial decay to exponentially small ripples at infinity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 4
SP - 669
EP - 704
LA - eng
KW - existence; analytic continuation; exponentially small upper bounds; oscillatory integrals
UR - http://eudml.org/doc/78593
ER -
References
top- [1] Amick C., On the theory of internal waves of permanent form in fluids of great depth, Trans. Amer. Math. Soc.346 (1994) 399-419. Zbl0829.76012MR1145726
- [2] Amick C., Toland J., Uniqueness and related analytic properties for the Benjamin–Ono equation – a nonlinear Neumann problem in the plane, Acta Math.167 (1991) 107-126. Zbl0755.35108MR1111746
- [3] Benjamin T.B., Internal waves of permanent form in fluids of great depth, J. Fluid Mech.29 (1967) 559-592. Zbl0147.46502
- [4] Davis R.E., Acrivos A., Solitary internal waves in deep water, J. Fluid Mech.29 (1967) 593-607. Zbl0147.46503
- [5] F. Dias, G. Iooss, Water-Waves as a Spatial Dynamical System, Handbook of Mathematical Fluid Dynamics, to appear. Zbl1183.76630MR1984157
- [6] Iooss G., Gravity and capillary-gravity periodic travelling waves for two superposed fluid layers, one being of infinite depth, J. Math. Fluid Mech.1 (1999) 24-61. Zbl0926.76020MR1699018
- [7] Iooss G., Lombardi E., Sun S.M., Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation, Phil. Trans. R. Soc. London A360 (2002) 2245-2336. Zbl1152.76335MR1949970
- [8] Levi-Civita T., Détermination rigoureuse des ondes permanentes d'ampleur finie, Math. Annalen93 (1925) 264-314. MR1512238JFM51.0671.06
- [9] Lombardi E., Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves, Arch. Rat. Mech. Anal.137 (1997) 227-304. Zbl0888.58039MR1463796
- [10] Lombardi E., Oscillatory Integrals and Phenomena Beyond all Algebraic Orders, with Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Math., 1741, Springer, 2000. Zbl0959.34002MR1770093
- [11] Ono H., Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan39 (1975) 1082-1091. Zbl1334.76027MR398275
- [12] Părău E., Dias F., Interfacial periodic waves of permanent form with free-surface boundary conditions, J. Fluid Mech.437 (2001) 325-336. Zbl1054.76013MR1841797
- [13] Sun S.M., Shen M.C., Exponentially small estimate for the amplitude of capillary ripples of a generalized solitary wave, J. Math. Anal. Appl.172 (1993) 533-566. Zbl0772.76010MR1201004
- [14] Sun S.M., Existence of solitary internal waves in a two-layer fluid of infinite depth, Nonlinear Analysis30 (8) (1997) 5481-5490. Zbl0912.76013MR1726052
- [15] Sun S.M., Nonexistence of truly solitary waves in water with small surface tension, Proc. Roy. London A455 (1999) 2191-2228. Zbl0933.76014MR1702734
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.