Gravity solitary waves with polynomial decay to exponentially small ripples at infinity

E. Lombardi; G. Iooss

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 4, page 669-704
  • ISSN: 0294-1449

How to cite

top

Lombardi, E., and Iooss, G.. "Gravity solitary waves with polynomial decay to exponentially small ripples at infinity." Annales de l'I.H.P. Analyse non linéaire 20.4 (2003): 669-704. <http://eudml.org/doc/78593>.

@article{Lombardi2003,
author = {Lombardi, E., Iooss, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {existence; analytic continuation; exponentially small upper bounds; oscillatory integrals},
language = {eng},
number = {4},
pages = {669-704},
publisher = {Elsevier},
title = {Gravity solitary waves with polynomial decay to exponentially small ripples at infinity},
url = {http://eudml.org/doc/78593},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Lombardi, E.
AU - Iooss, G.
TI - Gravity solitary waves with polynomial decay to exponentially small ripples at infinity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 4
SP - 669
EP - 704
LA - eng
KW - existence; analytic continuation; exponentially small upper bounds; oscillatory integrals
UR - http://eudml.org/doc/78593
ER -

References

top
  1. [1] Amick C., On the theory of internal waves of permanent form in fluids of great depth, Trans. Amer. Math. Soc.346 (1994) 399-419. Zbl0829.76012MR1145726
  2. [2] Amick C., Toland J., Uniqueness and related analytic properties for the Benjamin–Ono equation – a nonlinear Neumann problem in the plane, Acta Math.167 (1991) 107-126. Zbl0755.35108MR1111746
  3. [3] Benjamin T.B., Internal waves of permanent form in fluids of great depth, J. Fluid Mech.29 (1967) 559-592. Zbl0147.46502
  4. [4] Davis R.E., Acrivos A., Solitary internal waves in deep water, J. Fluid Mech.29 (1967) 593-607. Zbl0147.46503
  5. [5] F. Dias, G. Iooss, Water-Waves as a Spatial Dynamical System, Handbook of Mathematical Fluid Dynamics, to appear. Zbl1183.76630MR1984157
  6. [6] Iooss G., Gravity and capillary-gravity periodic travelling waves for two superposed fluid layers, one being of infinite depth, J. Math. Fluid Mech.1 (1999) 24-61. Zbl0926.76020MR1699018
  7. [7] Iooss G., Lombardi E., Sun S.M., Gravity travelling waves for two superposed fluid layers, one being of infinite depth: a new type of bifurcation, Phil. Trans. R. Soc. London A360 (2002) 2245-2336. Zbl1152.76335MR1949970
  8. [8] Levi-Civita T., Détermination rigoureuse des ondes permanentes d'ampleur finie, Math. Annalen93 (1925) 264-314. MR1512238JFM51.0671.06
  9. [9] Lombardi E., Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves, Arch. Rat. Mech. Anal.137 (1997) 227-304. Zbl0888.58039MR1463796
  10. [10] Lombardi E., Oscillatory Integrals and Phenomena Beyond all Algebraic Orders, with Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Math., 1741, Springer, 2000. Zbl0959.34002MR1770093
  11. [11] Ono H., Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan39 (1975) 1082-1091. Zbl1334.76027MR398275
  12. [12] Părău E., Dias F., Interfacial periodic waves of permanent form with free-surface boundary conditions, J. Fluid Mech.437 (2001) 325-336. Zbl1054.76013MR1841797
  13. [13] Sun S.M., Shen M.C., Exponentially small estimate for the amplitude of capillary ripples of a generalized solitary wave, J. Math. Anal. Appl.172 (1993) 533-566. Zbl0772.76010MR1201004
  14. [14] Sun S.M., Existence of solitary internal waves in a two-layer fluid of infinite depth, Nonlinear Analysis30 (8) (1997) 5481-5490. Zbl0912.76013MR1726052
  15. [15] Sun S.M., Nonexistence of truly solitary waves in water with small surface tension, Proc. Roy. London A455 (1999) 2191-2228. Zbl0933.76014MR1702734

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.