Nonhyperbolic persistent attractors near the Morse–Smale boundary

Eduardo M Muñoz Morales; Bernardo San Martín Rebolledo; Jaime A Vera Valenzuela

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 5, page 867-888
  • ISSN: 0294-1449

How to cite

top

Muñoz Morales, Eduardo M, San Martín Rebolledo, Bernardo, and Vera Valenzuela, Jaime A. "Nonhyperbolic persistent attractors near the Morse–Smale boundary." Annales de l'I.H.P. Analyse non linéaire 20.5 (2003): 867-888. <http://eudml.org/doc/78600>.

@article{MuñozMorales2003,
author = {Muñoz Morales, Eduardo M, San Martín Rebolledo, Bernardo, Vera Valenzuela, Jaime A},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {5},
pages = {867-888},
publisher = {Elsevier},
title = {Nonhyperbolic persistent attractors near the Morse–Smale boundary},
url = {http://eudml.org/doc/78600},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Muñoz Morales, Eduardo M
AU - San Martín Rebolledo, Bernardo
AU - Vera Valenzuela, Jaime A
TI - Nonhyperbolic persistent attractors near the Morse–Smale boundary
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 5
SP - 867
EP - 888
LA - eng
UR - http://eudml.org/doc/78600
ER -

References

top
  1. [1] Benedicks M., Carleson L., On iterations of 1−ax2 on (−1,1), Ann. Math.122 (1985) 1-24. Zbl0597.58016
  2. [2] Benedicks M., Carleson L., The dynamics of the Hénon map, Ann. Math.133 (1991) 73-169. Zbl0724.58042MR1087346
  3. [3] Bamón R., Labarca R., Mañé R., Pacífico M.J., The explosion of singular cycles, Publ. Math. IHES78 (1993) 207-232. Zbl0801.58010MR1259432
  4. [4] Collet P., Eckmann J.P., On the abundance of aperiodic behaviour for maps on the interval, Comm. Phys.73 (1980) 115-160. Zbl0441.58011MR573469
  5. [5] Guckenheimer J., Sensitive dependence to initial conditions for one dynamical maps, Comm. Math. Phys.70 (1979) 133-160. Zbl0429.58012MR553966
  6. [6] Labarca R., Bifurcation of contracting singular cycles, Ann. Scient. Ec. Norm. Sup. 4e Série28 (1995) 705-745. Zbl0857.58036MR1355139
  7. [7] Labarca R., Pacífico M.J., Stability of singular horseshoe, Topology25 (1986) 337-352. Zbl0611.58033MR842429
  8. [8] de Mello W., van Strien S., One-Dimensional Dynamics, Modern Surveys in Mathematics, 25, Springer-Verlag, Berlin, 1991. Zbl0791.58003
  9. [9] C. Morales, M.J. Pacifico, B. San Martín, Lorenz atractor from double homoclinic resonant cycles, Preprint. 
  10. [10] Mora L., Viana M., Abundance of strange attractors, Acta Math.171 (1993) 1-71. Zbl0815.58016MR1237897
  11. [11] Pacífico M.J., Rovella A., Unfolding contracting singular cycles, Ann. Scient. Éc. Norm. Sup. 4e Série26 (1993) 691-700. Zbl0802.58036MR1251149
  12. [12] Palis J., On Morse–Smale dynamical systems, Topology8 (1969). Zbl0189.23902MR246316
  13. [13] Palis J., Smale S., Structural Stability Theorems, Global Analysis, Proc. Symp. in Pure Math., XIV, American Mathematical Society, Providence, RI, 1970. Zbl0214.50702MR267603
  14. [14] Palis J., Takens F., Hyperbolicity & Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993. Zbl0790.58014MR1237641
  15. [15] A. Rovella, The dynamics of perturbations of the contracting Lorenz attractor, Bol. Soc. Bras. Mat. 24 (2) 233–259. Zbl0797.58051MR1254985
  16. [16] San Martín B., Contracting singular cycles, Ann. Inst. Henri Poincaré15 (5) (1998) 651-659. Zbl0942.37039MR1643401
  17. [17] B. San Martín, J. Vera, Nonhyperbolic persistent attractors near the Morse–Smale boundary II, Informe de matemáticas UCN. Zbl1185.37041
  18. [18] Shub M., Global Stability of Dynamical Systems, Springer-Verlag, Berlin, 1987. Zbl0606.58003MR869255

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.