Milton's conjecture on the regularity of solutions to isotropic equations

Daniel Faraco

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 5, page 889-909
  • ISSN: 0294-1449

How to cite

top

Faraco, Daniel. "Milton's conjecture on the regularity of solutions to isotropic equations." Annales de l'I.H.P. Analyse non linéaire 20.5 (2003): 889-909. <http://eudml.org/doc/78601>.

@article{Faraco2003,
author = {Faraco, Daniel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {isotropic equations},
language = {eng},
number = {5},
pages = {889-909},
publisher = {Elsevier},
title = {Milton's conjecture on the regularity of solutions to isotropic equations},
url = {http://eudml.org/doc/78601},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Faraco, Daniel
TI - Milton's conjecture on the regularity of solutions to isotropic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 5
SP - 889
EP - 909
LA - eng
KW - isotropic equations
UR - http://eudml.org/doc/78601
ER -

References

top
  1. [1] Ahlfors L.V., Lectures on Quasiconformal Mappings, Van Nostrand, Princenton, 1966. Zbl0138.06002MR200442
  2. [2] Astala K., Area distortion of quasiconformal mappings, Acta Math.173 (1994) 37-60. Zbl0815.30015MR1294669
  3. [3] K. Astala, In preparation. 
  4. [4] Astala K., Iwaniec T., Saksman E., Beltrami operators in the plane, Duke Math. J.107 (1) (2001) 27-56. Zbl1009.30015MR1815249
  5. [5] K. Astala, D. Faraco, Quasiregular mappings and Young measures, Proc. Roy. Soc. Edinburgh Sect. A, to appear. Zbl1016.30016MR1938712
  6. [6] K. Astala, V. Nesi, Composites and quasiconformal mappings: New optimal bounds in two dimensions, Calc. Var. Partial Differential Equations, to appear. Zbl1106.74052MR2020365
  7. [7] Braides A., Defranceschi A., Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications, 12, Clarendon Press/Oxford University Press, New York, 1998. Zbl0911.49010MR1684713
  8. [8] Bojarski B.V., Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients, Mat. Sb. NS43 (85) (1957) 451-503, (Russian). MR106324
  9. [9] Dacorogna B., Marcellini P., Implicit Partial Differential Equations, Progress in Nonlinear Differential Equations and Their Applications, 37, Birkhäuser, 1999. Zbl0938.35002MR1702252
  10. [10] Erëmenko A., Hamilton D.H., On the area distortion by quasiconformal mappings, Proc. Amer. Math. Soc.123 (9) (1995) 2793-2797. Zbl0841.30013MR1283548
  11. [11] D. Faraco, Tartar Conjecture and Beltrami Operators, Preprint at the University of Helsinki, 2002. MR2043398
  12. [12] Iwaniec T., Sbordone C., Quasiharmonic fields, Ann. Inst. H. Poincaré Anal. Non Linaire18 (5) (2001) 519-572. Zbl1068.30011MR1849688
  13. [13] B. Kirheim, Geometry and rigidity of microstructures, Habilitation Thesis, Leipzig, 2001. Zbl1140.74303
  14. [14] Koskela P., The degree of regularity of a quasiconformal mapping, Proc. Amer. Math. Soc.122 (3) (1994) 769-772. Zbl0814.30015MR1204381
  15. [15] Leonetti F., Nesi V., Quasiconformal solutions to certain first order systems and the proof of a conjecture of G.W. Milton, J. Math. Pures. Appl. (9)76 (1997) 109-124. Zbl0869.35019MR1432370
  16. [16] Marino A., Spagnolo S., Un tipo di approssimazione dell'operatore ∑1nijDi(aij(x)Dj) con operatori ∑1njDj(β(x)Dj), Ann. Scuola Norm. Sup. Pisa (3)23 (1969) 657-673, (Italian). Zbl0187.35305
  17. [17] Meyers N.G., An Lp estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa (3)17 (1963) 189-206. Zbl0127.31904MR159110
  18. [18] Milton G., Modelling the properties of composites by laminates, in: Homogenization and Effective Moduli of Materials and Media, IMA Volumes in Mathematics and its Applications, 1, Springer-Verlag, New York, 1986. Zbl0631.73011MR859415
  19. [19] Morrey C.B., On the solution of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc.43 (1938) 126-166. Zbl0018.40501MR1501936JFM64.0460.02
  20. [20] Müller S., Šverák V., Unexpected solutions of first and second order partial differential equations, Doc. Math. J. DMVICM (1998) 691-702. Zbl0896.35029MR1648117
  21. [21] S. Müller, V. Šverák, Convex integrations with constrains and applications to phase transitions and partial differtential equations, MPI MIS, Preprint 98, 1999. MR1728376
  22. [22] Pedregal P., Laminates and microstructure, Eur. J. Appl. Math.4 (1993) 121-149. Zbl0779.73050MR1228114
  23. [23] Pedregal P., Parametrized Measures and Variational Principles, Birkhäuser, 1997. Zbl0879.49017MR1452107
  24. [24] Piccinini L.C., Spagnolo S., On the Hölder continuity of solutions of second order elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa (3)26 (1972) 391-402. Zbl0237.35028MR361422

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.