A Liouville theorem for solutions of the Monge–Ampère equation with periodic data

L Caffarelli; Yan Yan Li

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 1, page 97-120
  • ISSN: 0294-1449

How to cite

top

Caffarelli, L, and Li, Yan Yan. "A Liouville theorem for solutions of the Monge–Ampère equation with periodic data." Annales de l'I.H.P. Analyse non linéaire 21.1 (2004): 97-120. <http://eudml.org/doc/78613>.

@article{Caffarelli2004,
author = {Caffarelli, L, Li, Yan Yan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {1},
pages = {97-120},
publisher = {Elsevier},
title = {A Liouville theorem for solutions of the Monge–Ampère equation with periodic data},
url = {http://eudml.org/doc/78613},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Caffarelli, L
AU - Li, Yan Yan
TI - A Liouville theorem for solutions of the Monge–Ampère equation with periodic data
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 1
SP - 97
EP - 120
LA - eng
UR - http://eudml.org/doc/78613
ER -

References

top
  1. [1] Caffarelli L., A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity, Ann. of Math.13 (1990) 129-134. Zbl0704.35045MR1038359
  2. [2] Caffarelli L., Interior W2,p estimates for solutions of the Monge–Ampère equation, Ann. of Math.131 (1990) 135-150. Zbl0704.35044MR1038360
  3. [3] Caffarelli L., Graduate Course at the Courant Institute, New York University, New York, 1995. 
  4. [4] Caffarelli L., Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys.214 (2000) 547-563. Zbl0978.60107MR1800860
  5. [5] Caffarelli L., Cabre X., Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. Zbl0834.35002MR1351007
  6. [6] Caffarelli L., Gutiérrez C., Properties of the solutions of the linearized Monge–Ampère equation, Amer. J. Math.119 (1997) 423-465. Zbl0878.35039MR1439555
  7. [7] Caffarelli L., Li Y.Y., An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math.56 (2003) 549-583. Zbl1236.35041MR1953651
  8. [8] Caffarelli L., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second-order elliptic equations, I. Monge–Ampère equation, Comm. Pure Appl. Math.37 (1984) 369-402. Zbl0598.35047MR739925
  9. [9] Caffarelli L., Viaclovsky J., On the regularity of solutions to Monge–Ampère equations on Hessian manifolds, Comm. Partial Differential Equations26 (2001) 2339-2351. Zbl0990.35029MR1876421
  10. [10] Calabi E., Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J.5 (1958). Zbl0113.30104MR106487
  11. [11] Cheng S.Y., Yau S.T., The real Monge–Ampère equation and affine flat structures, in: Proceedings of the Symposium on Differential Geometry and Differential Equations, vols. 1–3, Beijing, 1980, Science Press, Beijing, 1982, pp. 339-370. Zbl0517.35020MR714338
  12. [12] Cheng S.Y., Yau S.T., Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math.39 (1986) 839-866. Zbl0623.53002MR859275
  13. [13] Chou K.-S., Wang X.-J., A variational theory of the Hessian equation, Comm. Pure Appl. Math.54 (2001) 1029-1064. Zbl1035.35037MR1835381
  14. [14] De Guzman M., Differentiation of Integrals in Rn, Lecture Notes, vol. 481, Springer-Verlag, Berlin, 1976. Zbl0327.26010
  15. [15] Evans L.C., Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math.35 (1982) 333-363. Zbl0469.35022MR649348
  16. [16] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  17. [17] Jörgens K., Über die Lösungen der Differentialgleichung rt−s2=1, Math. Ann.127 (1954) 130-134. Zbl0055.08404
  18. [18] Krylov N.V., Boundedly inhomogeneous elliptic and parabolic equation in a domain, Izv. Akad. Nauk SSSR47 (1983) 75-108. Zbl0578.35024MR688919
  19. [19] Krylov N.V., Safonov M.V., An estimate of the probability that a diffusion process hits a set of positive measure, Dokl. Akad. Nauk. SSSR245 (1979) 253-255, English translation in: , Soviet Math. Dokl.20 (1979) 253-255. Zbl0459.60067MR525227
  20. [20] Li Y.Y., Some existence results of fully nonlinear elliptic equations of Monge–Ampère type, Comm. Pure Appl. Math.43 (1990) 233-271. Zbl0705.35038MR1038143
  21. [21] Pogorelov A.V., On the improper affine hypersurfaces, Geom. Dedicata1 (1972) 33-46. Zbl0251.53005MR319126
  22. [22] Trudinger N., Wang X., The Bernstein problem for affine maximal hypersurfaces, Invent. Math.140 (2000) 399-422. Zbl0978.53021MR1757001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.