A Liouville theorem for solutions of the Monge–Ampère equation with periodic data
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 1, page 97-120
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] Caffarelli L., A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity, Ann. of Math.13 (1990) 129-134. Zbl0704.35045MR1038359
- [2] Caffarelli L., Interior W2,p estimates for solutions of the Monge–Ampère equation, Ann. of Math.131 (1990) 135-150. Zbl0704.35044MR1038360
- [3] Caffarelli L., Graduate Course at the Courant Institute, New York University, New York, 1995.
- [4] Caffarelli L., Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys.214 (2000) 547-563. Zbl0978.60107MR1800860
- [5] Caffarelli L., Cabre X., Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. Zbl0834.35002MR1351007
- [6] Caffarelli L., Gutiérrez C., Properties of the solutions of the linearized Monge–Ampère equation, Amer. J. Math.119 (1997) 423-465. Zbl0878.35039MR1439555
- [7] Caffarelli L., Li Y.Y., An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math.56 (2003) 549-583. Zbl1236.35041MR1953651
- [8] Caffarelli L., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second-order elliptic equations, I. Monge–Ampère equation, Comm. Pure Appl. Math.37 (1984) 369-402. Zbl0598.35047MR739925
- [9] Caffarelli L., Viaclovsky J., On the regularity of solutions to Monge–Ampère equations on Hessian manifolds, Comm. Partial Differential Equations26 (2001) 2339-2351. Zbl0990.35029MR1876421
- [10] Calabi E., Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J.5 (1958). Zbl0113.30104MR106487
- [11] Cheng S.Y., Yau S.T., The real Monge–Ampère equation and affine flat structures, in: Proceedings of the Symposium on Differential Geometry and Differential Equations, vols. 1–3, Beijing, 1980, Science Press, Beijing, 1982, pp. 339-370. Zbl0517.35020MR714338
- [12] Cheng S.Y., Yau S.T., Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math.39 (1986) 839-866. Zbl0623.53002MR859275
- [13] Chou K.-S., Wang X.-J., A variational theory of the Hessian equation, Comm. Pure Appl. Math.54 (2001) 1029-1064. Zbl1035.35037MR1835381
- [14] De Guzman M., Differentiation of Integrals in Rn, Lecture Notes, vol. 481, Springer-Verlag, Berlin, 1976. Zbl0327.26010
- [15] Evans L.C., Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math.35 (1982) 333-363. Zbl0469.35022MR649348
- [16] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [17] Jörgens K., Über die Lösungen der Differentialgleichung rt−s2=1, Math. Ann.127 (1954) 130-134. Zbl0055.08404
- [18] Krylov N.V., Boundedly inhomogeneous elliptic and parabolic equation in a domain, Izv. Akad. Nauk SSSR47 (1983) 75-108. Zbl0578.35024MR688919
- [19] Krylov N.V., Safonov M.V., An estimate of the probability that a diffusion process hits a set of positive measure, Dokl. Akad. Nauk. SSSR245 (1979) 253-255, English translation in: , Soviet Math. Dokl.20 (1979) 253-255. Zbl0459.60067MR525227
- [20] Li Y.Y., Some existence results of fully nonlinear elliptic equations of Monge–Ampère type, Comm. Pure Appl. Math.43 (1990) 233-271. Zbl0705.35038MR1038143
- [21] Pogorelov A.V., On the improper affine hypersurfaces, Geom. Dedicata1 (1972) 33-46. Zbl0251.53005MR319126
- [22] Trudinger N., Wang X., The Bernstein problem for affine maximal hypersurfaces, Invent. Math.140 (2000) 399-422. Zbl0978.53021MR1757001