A Liouville theorem for solutions of the Monge–Ampère equation with periodic data
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 1, page 97-120
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCaffarelli, L, and Li, Yan Yan. "A Liouville theorem for solutions of the Monge–Ampère equation with periodic data." Annales de l'I.H.P. Analyse non linéaire 21.1 (2004): 97-120. <http://eudml.org/doc/78613>.
@article{Caffarelli2004,
author = {Caffarelli, L, Li, Yan Yan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {1},
pages = {97-120},
publisher = {Elsevier},
title = {A Liouville theorem for solutions of the Monge–Ampère equation with periodic data},
url = {http://eudml.org/doc/78613},
volume = {21},
year = {2004},
}
TY - JOUR
AU - Caffarelli, L
AU - Li, Yan Yan
TI - A Liouville theorem for solutions of the Monge–Ampère equation with periodic data
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 1
SP - 97
EP - 120
LA - eng
UR - http://eudml.org/doc/78613
ER -
References
top- [1] Caffarelli L., A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity, Ann. of Math.13 (1990) 129-134. Zbl0704.35045MR1038359
- [2] Caffarelli L., Interior W2,p estimates for solutions of the Monge–Ampère equation, Ann. of Math.131 (1990) 135-150. Zbl0704.35044MR1038360
- [3] Caffarelli L., Graduate Course at the Courant Institute, New York University, New York, 1995.
- [4] Caffarelli L., Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys.214 (2000) 547-563. Zbl0978.60107MR1800860
- [5] Caffarelli L., Cabre X., Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. Zbl0834.35002MR1351007
- [6] Caffarelli L., Gutiérrez C., Properties of the solutions of the linearized Monge–Ampère equation, Amer. J. Math.119 (1997) 423-465. Zbl0878.35039MR1439555
- [7] Caffarelli L., Li Y.Y., An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math.56 (2003) 549-583. Zbl1236.35041MR1953651
- [8] Caffarelli L., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second-order elliptic equations, I. Monge–Ampère equation, Comm. Pure Appl. Math.37 (1984) 369-402. Zbl0598.35047MR739925
- [9] Caffarelli L., Viaclovsky J., On the regularity of solutions to Monge–Ampère equations on Hessian manifolds, Comm. Partial Differential Equations26 (2001) 2339-2351. Zbl0990.35029MR1876421
- [10] Calabi E., Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J.5 (1958). Zbl0113.30104MR106487
- [11] Cheng S.Y., Yau S.T., The real Monge–Ampère equation and affine flat structures, in: Proceedings of the Symposium on Differential Geometry and Differential Equations, vols. 1–3, Beijing, 1980, Science Press, Beijing, 1982, pp. 339-370. Zbl0517.35020MR714338
- [12] Cheng S.Y., Yau S.T., Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math.39 (1986) 839-866. Zbl0623.53002MR859275
- [13] Chou K.-S., Wang X.-J., A variational theory of the Hessian equation, Comm. Pure Appl. Math.54 (2001) 1029-1064. Zbl1035.35037MR1835381
- [14] De Guzman M., Differentiation of Integrals in Rn, Lecture Notes, vol. 481, Springer-Verlag, Berlin, 1976. Zbl0327.26010
- [15] Evans L.C., Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math.35 (1982) 333-363. Zbl0469.35022MR649348
- [16] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [17] Jörgens K., Über die Lösungen der Differentialgleichung rt−s2=1, Math. Ann.127 (1954) 130-134. Zbl0055.08404
- [18] Krylov N.V., Boundedly inhomogeneous elliptic and parabolic equation in a domain, Izv. Akad. Nauk SSSR47 (1983) 75-108. Zbl0578.35024MR688919
- [19] Krylov N.V., Safonov M.V., An estimate of the probability that a diffusion process hits a set of positive measure, Dokl. Akad. Nauk. SSSR245 (1979) 253-255, English translation in: , Soviet Math. Dokl.20 (1979) 253-255. Zbl0459.60067MR525227
- [20] Li Y.Y., Some existence results of fully nonlinear elliptic equations of Monge–Ampère type, Comm. Pure Appl. Math.43 (1990) 233-271. Zbl0705.35038MR1038143
- [21] Pogorelov A.V., On the improper affine hypersurfaces, Geom. Dedicata1 (1972) 33-46. Zbl0251.53005MR319126
- [22] Trudinger N., Wang X., The Bernstein problem for affine maximal hypersurfaces, Invent. Math.140 (2000) 399-422. Zbl0978.53021MR1757001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.