Droplet spreading under weak slippage : the waiting time phenomenon

Günther Grün

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 2, page 255-269
  • ISSN: 0294-1449

How to cite

top

Grün, Günther. "Droplet spreading under weak slippage : the waiting time phenomenon." Annales de l'I.H.P. Analyse non linéaire 21.2 (2004): 255-269. <http://eudml.org/doc/78618>.

@article{Grün2004,
author = {Grün, Günther},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Fourth order degenerate parabolic equations; Thin films; Navier's slip condition; Hardy-type inequality; weighted energy estimates},
language = {eng},
number = {2},
pages = {255-269},
publisher = {Elsevier},
title = {Droplet spreading under weak slippage : the waiting time phenomenon},
url = {http://eudml.org/doc/78618},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Grün, Günther
TI - Droplet spreading under weak slippage : the waiting time phenomenon
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 2
SP - 255
EP - 269
LA - eng
KW - Fourth order degenerate parabolic equations; Thin films; Navier's slip condition; Hardy-type inequality; weighted energy estimates
UR - http://eudml.org/doc/78618
ER -

References

top
  1. [1] Beretta E., Bertsch M., Dal Passo R., Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation, Arch. Rational Mech. Anal.129 (1995) 175-200. Zbl0827.35065MR1328475
  2. [2] Bernis F., Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems, in: Diaz J.I., Herrero M.A., Linan A., Vazquez J.L. (Eds.), Free Boundary Problems: Theory and Applications, Pitman Research Notes in Mathematics, vol. 323, Longman, Harlow, 1995, pp. 40-56. Zbl0839.35102MR1342325
  3. [3] Bernis F., Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differential Equations1 (3) (1996) 337-368. Zbl0846.35058MR1401398
  4. [4] Bertsch M., Dal Passo R., Garcke H., Grün G., The thin viscous flow equation in higher space dimensions, Adv. Differential Equations3 (1998) 417-440. Zbl0954.35035MR1751951
  5. [5] Dal Passo R., Garcke H., Grün G., On a fourth order degenerate parabolic equation: global entropy estimates and qualitative behaviour of solutions, SIAM J. Math. Anal.29 (1998) 321-342. Zbl0929.35061MR1616558
  6. [6] Dal Passo R., Giacomelli L., Grün G., A waiting time phenomenon for thin film equations, Ann. Scuola Norm. Sup. Pisa30 (2001) 437-463. Zbl1024.35051MR1895718
  7. [7] Dal Passo R., Giacomelli L., Shishkov A., The thin film equation with nonlinear diffusion, Comm. Partial Differential Equations26 (2001) 1509-1557. Zbl1001.35070MR1865938
  8. [8] de Gennes P.G., Wetting: statistics and dynamics, Rev. Modern Phys.57 (1985) 827-863. 
  9. [9] Ferreira R., Bernis F., Source-type solutions to thin-film equations in higher space dimensions, European J. Appl. Math.8 (1997) 507-524. Zbl0894.76019MR1479525
  10. [10] Grün G., Droplet spreading under weak slippage: a basic result on finite speed of propagation, SIAM J. Math. Anal.34 (2003) 992-1006. Zbl1035.35049MR1969611
  11. [11] Grün G., On Bernis' interpolation inequalities in multiple space dimensions, Z. Anal. Anwendungen20 (2001) 987-998. Zbl0996.35026MR1884516
  12. [12] Grün G., On free boundary problems arising in thin film flow, Habilitation thesis, University of Bonn, 2001. 
  13. [13] Grün G., Droplet spreading under weak slippage: the optimal asymptotic propagation rate in the multi-dimensional case, Interfaces Free Bound.4 (2002) 309-323. Zbl1056.35072MR1914626
  14. [14] Hardy G.H., Note on a theorem of Hilbert, Math. Z.6 (1920) 314-317. Zbl47.0207.01MR1544414JFM47.0207.01
  15. [15] Hardy G.H., Littlewood J.E., Pólya G., Inequalities, Cambridge University Press, Cambridge, 1934. JFM60.0169.01
  16. [16] Hulshof J., Shishkov A., The thin film equation with 2≤n&lt;3: finite speed of propagation in terms of the L1-norm, Adv. Differential Equations3 (1998) 625-642. Zbl0953.35072
  17. [17] Jäger W., Mikelic A., On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations170 (2001) 96-122. Zbl1009.76017MR1813101
  18. [18] Opic B., Kufner A., Hardy-Type Inequalities, Pitman Research Notes, vol. 219, Longman, Harlow, 1990. Zbl0698.26007MR1069756
  19. [19] Oron A., Davis S.H., Bankoff S.G., Long-scale evolution of thin liquid films, Rev. Modern Phys.69 (1997) 932-977. 
  20. [20] Otto F., Lubrication approximation with prescribed non-zero contact angle: an existence result, Comm. Partial Differential Equations23 (1998) 2077-2164. Zbl0923.35211MR1662172
  21. [21] Stampacchia G., Équations elliptiques du second ordre à coefficients discontinus, Les presses de l'université de Montréal, Montréal, 1966. Zbl0151.15501MR251373

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.