Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity

Denis Bonheure

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 3, page 319-340
  • ISSN: 0294-1449

How to cite

top

Bonheure, Denis. "Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity." Annales de l'I.H.P. Analyse non linéaire 21.3 (2004): 319-340. <http://eudml.org/doc/78621>.

@article{Bonheure2004,
author = {Bonheure, Denis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Multitransition heteroclinics and homoclinics; Swift-Hohenberg equation; Minimization; Saddle-focus equilibrium},
language = {eng},
number = {3},
pages = {319-340},
publisher = {Elsevier},
title = {Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity},
url = {http://eudml.org/doc/78621},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Bonheure, Denis
TI - Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 3
SP - 319
EP - 340
LA - eng
KW - Multitransition heteroclinics and homoclinics; Swift-Hohenberg equation; Minimization; Saddle-focus equilibrium
UR - http://eudml.org/doc/78621
ER -

References

top
  1. [1] Adams R.A., Sobolev Spaces, Academic Press, 1975. Zbl0314.46030MR450957
  2. [2] Bonheure D., Sanchez L., Tarallo M., Terracini S., Heteroclinic connections between nonconsecutive equilibria of a fourth order differential equation, Calc. Var. Partial Differential Equations17 (2003) 341-356. Zbl1031.34043MR1993958
  3. [3] D. Bonheure, P. Habets, L. Sanchez, Minimizers for fourth order symmetric bistable equation, Atti de seminari de matematica e fisica de la universita di Modena, in press. Zbl1115.34040
  4. [4] Brezis H., Analyse fonctionnelle, Théorie et applications, Masson, 1983. Zbl0511.46001MR697382
  5. [5] Dee G.T., van Saarloos W., Bistable systems with propagating fronts leading to patern formation, Phys. Rev. Lett.60 (1988) 2641-2644. 
  6. [6] Gomper G., Schick M., Phase Transitions and Critical Phenomena, Academic Press, 1994. 
  7. [7] Habets P., Sanchez L., Tarallo M., Terracini S., Heteroclinics for a class of fourth order conservative differential equations, in: CD ROM Proceedings, Equadiff 10, Prague, 2001. 
  8. [8] Kalies W.D., Kwapisz J., VanderVorst R.C.A.M., Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria, Comm. Math. Phys.193 (1998) 337-371. Zbl0908.34034MR1618147
  9. [9] Kalies W.D., VanderVorst R.C.A.M., Multitransition homoclinic and heteroclinic solutions of the extended Fisher–Kolmogorov equation, J. Differential Equations131 (1996) 209-228. Zbl0872.34033MR1419012
  10. [10] Kolmogorov A., Petrovski I., Piscounov N., Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moskow Ser. Internat. Sec. A1 (1937) 1-25. Zbl0018.32106
  11. [11] Peletier L.A., Troy W.C., Spatial patterns described by the extended Fisher–Kolmogorov (EFK) equation: Kinks, Differential Integral Equations8 (1995) 1279-1304. Zbl0826.34056MR1329841
  12. [12] Peletier L.A., Troy W.C., A topological shooting method and the existence of kinks of the extended Fisher–Kolmogorov equation, Topological Methods Nonlin. Anal.6 (1995) 331-355. Zbl0862.34030MR1399544
  13. [13] Peletier L.A., Troy W.C., Spatial Patterns, Higher Order Models in Physics and Mechanics, Birkhäuser, 2001. Zbl1076.34515MR1839555
  14. [14] Peletier L.A., Van der Vorst R.K.A.M., Troy W.C., Stationary solutions of a fourth-order nonlinear diffusion equation, Differentsial'nye Uravneniya31 (2) (1995) 327-337. Zbl0856.35029MR1373793
  15. [15] Smets D., van den Berg J.B., Homoclinic solutions for Swift–Hohenberg and suspension bridges type equations, J. Differential Equations184 (1) (2002) 78-96. Zbl1029.34036MR1929147
  16. [16] Swift J.B., Hohenberg P.C., Hydrodynamic fluctuations at the convective instability, Phys. Rev. A51 (1977) 319-328. 
  17. [17] J.B. van den Berg, Branches of heteroclinic, homoclinic and periodic solutions in a fourth-order bi-stable system, a numerical study, Master Thesis, Leiden University, October 1996. 
  18. [18] van den Berg J.B., The phase plane picture for a class of fourth order conservative differential equations, J. Differential Equations161 (2000) 110-153. Zbl0952.34026MR1740359
  19. [19] van den Berg G.J.B., Peletier L.A., Troy W.C., Global branches of multi-bump periodic solutions of the Swift–Hohenberg equation, Arch. Rational Mech. Anal.158 (2) (2001) 91-153. Zbl0983.34032MR1838655
  20. [20] J.B. van den Berg, Dynamics and equilibria of fourth order differential equations, Ph.D. Thesis, Leiden University, December 2000. Zbl1136.37301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.