Statistical mechanics of the N-point vortex system with random intensities on a bounded domain
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 3, page 381-399
- ISSN: 0294-1449
Access Full Article
topHow to cite
topNeri, Cassio. "Statistical mechanics of the N-point vortex system with random intensities on a bounded domain." Annales de l'I.H.P. Analyse non linéaire 21.3 (2004): 381-399. <http://eudml.org/doc/78623>.
@article{Neri2004,
author = {Neri, Cassio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Statistical mechanics; -point vortex system; Onsager theory; Limits of Gibbs's measures; Entropy; Mean field equation},
language = {eng},
number = {3},
pages = {381-399},
publisher = {Elsevier},
title = {Statistical mechanics of the N-point vortex system with random intensities on a bounded domain},
url = {http://eudml.org/doc/78623},
volume = {21},
year = {2004},
}
TY - JOUR
AU - Neri, Cassio
TI - Statistical mechanics of the N-point vortex system with random intensities on a bounded domain
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 3
SP - 381
EP - 399
LA - eng
KW - Statistical mechanics; -point vortex system; Onsager theory; Limits of Gibbs's measures; Entropy; Mean field equation
UR - http://eudml.org/doc/78623
ER -
References
top- [1] Book D.L., Fisher S., McDonald B.E., Steady-state distributions of interacting discrete vortices, Phys. Rev. Lett.34 (1) (1975) 4-8.
- [2] Caglioti E., Lions P.-L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys.143 (3) (1992) 501-525. Zbl0745.76001MR1145596
- [3] Caglioti E., Lions P.-L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description II, Comm. Math. Phys.174 (2) (1995) 229-260. Zbl0840.76002MR1362165
- [4] Chen H.H., Lee Y.C., Ting A.C., Exact solutions of a nonlinear boundary value problem: the vortices of the two-dimensional sinh-Poisson equation, Phys. D26 (1987) 37-66. Zbl0627.35039MR892436
- [5] Joyce G., Montgomery D., Negative temperature states for the two-dimensional guiding-center plasma, J. Plasma Phys.10 (1) (1973) 107-121.
- [6] Joyce G., Montgomery D., Statistical mechanics of “negative temperature” states, Phys. Fluids17 (6) (1974) 1139-1145.
- [7] Hewitt E., Savage L.J., Symmetric measures on Cartesian products, Trans. Amer. Math. Soc.80 (1955) 470-501. Zbl0066.29604MR76206
- [8] Kiessling M.K.-H., Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math.46 (1) (1993) 27-56. Zbl0811.76002MR1193342
- [9] Lundgren T.S., Pointin Y.B., Statistical mechanics of two-dimensional vortices in a bounded container, Phys. Fluids19 (10) (1973) 1459-1470. Zbl0339.76013
- [10] Lundgren T.S., Pointin Y.B., Statistical mechanics of two-dimensional vortices, J. Stat. Phys.17 (5) (1977) 323-355. Zbl0339.76013
- [11] McDonald B.E., Numerical calculation of non unique solutions of a two-dimensional sinh-Poisson equation, J. Comp. Phys.16 (1974) 360-370. Zbl0289.65040
- [12] Montgomery D., Two-dimensional vortex motion and “negative temperatures”, Phys. Lett. A39 (1972) 7-8.
- [13] Montgomery D., Tappert D., Conductivity of a two-dimensional guiding center plasma, Phys. Fluids15 (1972) 683-687.
- [14] Moser J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J.20 (1970/71) 1077-1092. Zbl0213.13001MR301504
- [15] Onsager L., Statistical hydrodynamics, Nuovo Cimento (9)6 (2) (1949) 279-287, Supplemento (Convegno Internazionale di Meccanica Statistica). MR36116
- [16] Ruelle D., Statistical Mechanics: Rigorous Results, W. A. Benjamin, New York, 1969. Zbl0177.57301MR289084
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.