Multiplicity of positive solutions for an indefinite superlinear elliptic problem on RN

Yihong Du

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 5, page 657-672
  • ISSN: 0294-1449

How to cite

top

Du, Yihong. "Multiplicity of positive solutions for an indefinite superlinear elliptic problem on RN." Annales de l'I.H.P. Analyse non linéaire 21.5 (2004): 657-672. <http://eudml.org/doc/78633>.

@article{Du2004,
author = {Du, Yihong},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Global bifurcation; a priori estimates},
language = {eng},
number = {5},
pages = {657-672},
publisher = {Elsevier},
title = {Multiplicity of positive solutions for an indefinite superlinear elliptic problem on RN},
url = {http://eudml.org/doc/78633},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Du, Yihong
TI - Multiplicity of positive solutions for an indefinite superlinear elliptic problem on RN
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 5
SP - 657
EP - 672
LA - eng
KW - Global bifurcation; a priori estimates
UR - http://eudml.org/doc/78633
ER -

References

top
  1. [1] Alama S., Tarantello G., On semilinear elliptic equations with indefinite nonlinearities, Calc. Var.1 (1993) 439-475. Zbl0809.35022MR1383913
  2. [2] Amann H., Multiple positive fixed points of asymptotically linear maps, J. Funct. Anal.17 (1974) 174-213. Zbl0287.47037MR350528
  3. [3] Amann H., Lopez-Gomez J., A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations146 (1998) 336-374. Zbl0909.35044MR1631287
  4. [4] Berestycki H., Capuzzo-Dolcetta I., Nirenberg L., Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonl. Anal.4 (1994) 59-78. Zbl0816.35030MR1321809
  5. [5] Berestycki H., Capuzzo-Dolcetta I., Nirenberg L., Variational methods for indefinite superlinear homogeneous elliptic problems, Nonlinear Differential Equations Appl.2 (1995) 553-572. Zbl0840.35035MR1356874
  6. [6] Berestycki H., Lions P.L., Some applications of the method of sub- and super-solutions, in: Lecture Notes in Math., vol. 782, Springer-Verlag, Berlin, 1980, pp. 16-41. Zbl0433.35023MR572249
  7. [7] Costa D.G., Tehrani H., Existence of positive solutions for a class of indefinite elliptic problems in RN, Calc. Var.13 (2001) 159-189. Zbl1077.35045MR1861096
  8. [8] Crandall M.G., Rabinowitz P.H., Bifurcation from simple eigenvalues, J. Funct. Anal.8 (1971) 321-340. Zbl0219.46015MR288640
  9. [9] Du Y., The structure of the solution set of a class of nonlinear eigenvalue problems, J. Math. Anal. Appl.170 (1992) 567-580. Zbl0784.35080MR1188572
  10. [10] Du Y., Guo Y., Mountain pass solutions and an indefinite superlinear elliptic problem on RN, Topological Methods in Nonl. Anal.22 (2003) 69-92. Zbl1254.35066MR2037267
  11. [11] Du Y., Huang Q., Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal.31 (1999) 1-18. Zbl0959.35065MR1720128
  12. [12] Y. Du, S.J. Li, Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations, preprint, Univ. of New England, 2003. 
  13. [13] Du Y., Ma L., Logistic type equations on RN by a squeezing method involving boundary blow-up solutions, J. London Math. Soc.64 (2001) 107-124. Zbl1018.35045MR1840774
  14. [14] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equation of Second Order, Springer-Verlag, 1977. Zbl0361.35003MR473443
  15. [15] Lions P.L., On the existence of positive solutions of semilinear elliptic equations, SIAM Rev.24 (1982) 441-467. Zbl0511.35033MR678562
  16. [16] Marcus M., Veron L., Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincare Anal. Nonlineaire14 (1997) 237-274. Zbl0877.35042MR1441394
  17. [17] Ouyang T., On the positive solutions of the semilinear equation Δu+λu+hup=0 on compact manifolds, Part II, Indiana Univ. Math. J.40 (1991) 1083-1141. Zbl0773.35020
  18. [18] Rabinowitz P.H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal.7 (1971) 487-513. Zbl0212.16504MR301587
  19. [19] Tehrani H.T., On indefinite superlinear elliptic equations, Calc. Var.4 (1996) 139-153. Zbl0852.35052MR1379197
  20. [20] Whyburn G.T., Topological Analysis, Princeton Univ. Press, Princeton, 1958. Zbl0080.15903MR99642

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.