On a Cahn–Hilliard model for phase separation with elastic misfit
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 2, page 165-185
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGarcke, Harald. "On a Cahn–Hilliard model for phase separation with elastic misfit." Annales de l'I.H.P. Analyse non linéaire 22.2 (2005): 165-185. <http://eudml.org/doc/78652>.
@article{Garcke2005,
author = {Garcke, Harald},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {elliptic-parabolic systems; logarithmic singularity; -estimates for gradients},
language = {eng},
number = {2},
pages = {165-185},
publisher = {Elsevier},
title = {On a Cahn–Hilliard model for phase separation with elastic misfit},
url = {http://eudml.org/doc/78652},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Garcke, Harald
TI - On a Cahn–Hilliard model for phase separation with elastic misfit
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 2
SP - 165
EP - 185
LA - eng
KW - elliptic-parabolic systems; logarithmic singularity; -estimates for gradients
UR - http://eudml.org/doc/78652
ER -
References
top- [1] Barrett J.W., Blowey J.F., An error bound for the finite element approximation of the Cahn–Hilliard equation with logarithmic free energy, Numer. Math.72 (1995) 257-287. Zbl0851.65070MR1359705
- [2] Barrett J.W., Blowey J.F., An error bound for the finite element approximation of a model for phase separation of a multi-component alloy, IMA J. Numer. Anal.16 (1996) 257-287. Zbl0849.65069MR1382718
- [3] Bonetti E., Colli P., Dreyer W., Gilardi G., Schimperna G., Sprekels J., A solid-solid phase change model accounting for mechanical effects, Physica D165 (2002) 48-65. Zbl1008.74066MR1910617
- [4] Cahn J.W., Hilliard J.E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys.28 (1958) 258-267.
- [5] Carrive M., Miranville A., Piétrus A., The Cahn–Hilliard equation for deformable elastic media, Adv. Math. Sci. Appl.10 (2000) 539-569. Zbl0987.35156MR1807441
- [6] De Fontaine D., An analysis of clustering and ordering in multicomponent solid solutions – I. Stability criteria, J. Phys. Chem. Solids33 (1972) 287-310.
- [7] C.M. Elliott, The Cahn–Hilliard model for the kinetics of phase transitions, in: J.F. Rodrigues (ed.), Mathematical Models for Phase Change Problems, Internat. Ser. Numer. Math., vol. 88, Birkhäuser, Basel, pp. 35–73. Zbl0692.73003MR1038064
- [8] C.M. Elliott, S. Luckhaus, A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy, SFB256 University Bonn, Preprint 195, 1991.
- [9] Eshelby J.D., Elastic inclusions and inhomogeneities, Prog. Solid Mech.2 (1961) 89-140. MR134510
- [10] Fratzl P., Penrose O., Lebowitz J.L., Modelling of phase separation in alloys with coherent elastic misfit, J. Statist. Phys.95 (5/6) (1999) 1429-1503. Zbl0952.74052MR1712452
- [11] H. Garcke, On mathematical models for phase separation in elastically stressed solids, habilitation thesis, 2000.
- [12] Garcke H., On Cahn–Hilliard sytems with elasticity, Proc. Roy. Soc. Edinburgh. Ser. A133 (2003) 307-331. Zbl1130.74037MR1969816
- [13] Garcke H., Rumpf M., Weikard U., The Cahn–Hilliard equation with elasticity: finite element approximation and qualitative studies, Interfaces and Free Boundaries3 (2001) 101-118. Zbl0972.35164MR1805080
- [14] Gehring F.W., The -integrability of the partial derivatives of a quasi conformal mapping, Acta Math.130 (1973) 265-277. Zbl0258.30021MR402038
- [15] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud., Princeton University Press, 1983. Zbl0516.49003MR717034
- [16] Giaquinta M., Modica G., Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math.311/312 (1979) 145-169. Zbl0409.35015MR549962
- [17] Hoyt J.J., The continuum theory of nucleation in multicomponent systems, Acta Metall.38 (1990) 1405-1412.
- [18] Khachaturyan A.G., Some questions concerning the theory of phase transitions in solids, Fiz. Tverd. Tela8 (1966) 2709-2717, English translation in, Sov. Phys. Solid. State8 (1966) 2163.
- [19] Kirkaldy J.S., Young D.J., Diffusion in the Condensed State, The Institute of Metals, London, 1987.
- [20] Larché F.C., Cahn J.W., Thermochemical equilibrium of multiphase solids under stress, Acta Metall.26 (1978) 1579-1589.
- [21] Larché F.C., Cahn J.W., The effect of self-stress on diffusion in solids, Acta Metall.30 (1982) 1835-1845.
- [22] Leo P.H., Lowengrub J.S., Jou H.J., A diffuse interface model for microstructural evolution in elastically stressed solids, Acta Mater.46 (1998) 2113-2130.
- [23] Novick–Cohen A., The Cahn–Hilliard equation: mathematical and modelling perspectives, Adv. Math. Sci. Appl.8 (1998) 965-985. Zbl0917.35044MR1657208
- [24] Onsager L., Reciprocal relations in irreversible processes I, Phys. Rev.37 (1931) 405-426. Zbl0001.09501
- [25] Onsager L., Reciprocal relations in irreversible processes II, Phys. Rev.38 (1931) 2265-2279. Zbl0004.18303
- [26] Onuki A., Ginzburg–Landau approach to elastic effects in the phase separation of solids, J. Phys. Soc. Jpn.58 (1989) 3065-3068.
- [27] J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, Verhaendel. Kronik. Akad. Weten. Amsterdam, vol. 1 (1893) (in Dutch).
- [28] Zeidler E., Nonlinear Functional Analysis and its Applications IV, Springer, New York, 1988. Zbl0648.47036MR932255
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.