On a Cahn–Hilliard model for phase separation with elastic misfit

Harald Garcke

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 2, page 165-185
  • ISSN: 0294-1449

How to cite

top

Garcke, Harald. "On a Cahn–Hilliard model for phase separation with elastic misfit." Annales de l'I.H.P. Analyse non linéaire 22.2 (2005): 165-185. <http://eudml.org/doc/78652>.

@article{Garcke2005,
author = {Garcke, Harald},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {elliptic-parabolic systems; logarithmic singularity; -estimates for gradients},
language = {eng},
number = {2},
pages = {165-185},
publisher = {Elsevier},
title = {On a Cahn–Hilliard model for phase separation with elastic misfit},
url = {http://eudml.org/doc/78652},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Garcke, Harald
TI - On a Cahn–Hilliard model for phase separation with elastic misfit
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 2
SP - 165
EP - 185
LA - eng
KW - elliptic-parabolic systems; logarithmic singularity; -estimates for gradients
UR - http://eudml.org/doc/78652
ER -

References

top
  1. [1] Barrett J.W., Blowey J.F., An error bound for the finite element approximation of the Cahn–Hilliard equation with logarithmic free energy, Numer. Math.72 (1995) 257-287. Zbl0851.65070MR1359705
  2. [2] Barrett J.W., Blowey J.F., An error bound for the finite element approximation of a model for phase separation of a multi-component alloy, IMA J. Numer. Anal.16 (1996) 257-287. Zbl0849.65069MR1382718
  3. [3] Bonetti E., Colli P., Dreyer W., Gilardi G., Schimperna G., Sprekels J., A solid-solid phase change model accounting for mechanical effects, Physica D165 (2002) 48-65. Zbl1008.74066MR1910617
  4. [4] Cahn J.W., Hilliard J.E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys.28 (1958) 258-267. 
  5. [5] Carrive M., Miranville A., Piétrus A., The Cahn–Hilliard equation for deformable elastic media, Adv. Math. Sci. Appl.10 (2000) 539-569. Zbl0987.35156MR1807441
  6. [6] De Fontaine D., An analysis of clustering and ordering in multicomponent solid solutions – I. Stability criteria, J. Phys. Chem. Solids33 (1972) 287-310. 
  7. [7] C.M. Elliott, The Cahn–Hilliard model for the kinetics of phase transitions, in: J.F. Rodrigues (ed.), Mathematical Models for Phase Change Problems, Internat. Ser. Numer. Math., vol. 88, Birkhäuser, Basel, pp. 35–73. Zbl0692.73003MR1038064
  8. [8] C.M. Elliott, S. Luckhaus, A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy, SFB256 University Bonn, Preprint 195, 1991. 
  9. [9] Eshelby J.D., Elastic inclusions and inhomogeneities, Prog. Solid Mech.2 (1961) 89-140. MR134510
  10. [10] Fratzl P., Penrose O., Lebowitz J.L., Modelling of phase separation in alloys with coherent elastic misfit, J. Statist. Phys.95 (5/6) (1999) 1429-1503. Zbl0952.74052MR1712452
  11. [11] H. Garcke, On mathematical models for phase separation in elastically stressed solids, habilitation thesis, 2000. 
  12. [12] Garcke H., On Cahn–Hilliard sytems with elasticity, Proc. Roy. Soc. Edinburgh. Ser. A133 (2003) 307-331. Zbl1130.74037MR1969816
  13. [13] Garcke H., Rumpf M., Weikard U., The Cahn–Hilliard equation with elasticity: finite element approximation and qualitative studies, Interfaces and Free Boundaries3 (2001) 101-118. Zbl0972.35164MR1805080
  14. [14] Gehring F.W., The L p -integrability of the partial derivatives of a quasi conformal mapping, Acta Math.130 (1973) 265-277. Zbl0258.30021MR402038
  15. [15] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud., Princeton University Press, 1983. Zbl0516.49003MR717034
  16. [16] Giaquinta M., Modica G., Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math.311/312 (1979) 145-169. Zbl0409.35015MR549962
  17. [17] Hoyt J.J., The continuum theory of nucleation in multicomponent systems, Acta Metall.38 (1990) 1405-1412. 
  18. [18] Khachaturyan A.G., Some questions concerning the theory of phase transitions in solids, Fiz. Tverd. Tela8 (1966) 2709-2717, English translation in, Sov. Phys. Solid. State8 (1966) 2163. 
  19. [19] Kirkaldy J.S., Young D.J., Diffusion in the Condensed State, The Institute of Metals, London, 1987. 
  20. [20] Larché F.C., Cahn J.W., Thermochemical equilibrium of multiphase solids under stress, Acta Metall.26 (1978) 1579-1589. 
  21. [21] Larché F.C., Cahn J.W., The effect of self-stress on diffusion in solids, Acta Metall.30 (1982) 1835-1845. 
  22. [22] Leo P.H., Lowengrub J.S., Jou H.J., A diffuse interface model for microstructural evolution in elastically stressed solids, Acta Mater.46 (1998) 2113-2130. 
  23. [23] Novick–Cohen A., The Cahn–Hilliard equation: mathematical and modelling perspectives, Adv. Math. Sci. Appl.8 (1998) 965-985. Zbl0917.35044MR1657208
  24. [24] Onsager L., Reciprocal relations in irreversible processes I, Phys. Rev.37 (1931) 405-426. Zbl0001.09501
  25. [25] Onsager L., Reciprocal relations in irreversible processes II, Phys. Rev.38 (1931) 2265-2279. Zbl0004.18303
  26. [26] Onuki A., Ginzburg–Landau approach to elastic effects in the phase separation of solids, J. Phys. Soc. Jpn.58 (1989) 3065-3068. 
  27. [27] J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, Verhaendel. Kronik. Akad. Weten. Amsterdam, vol. 1 (1893) (in Dutch). 
  28. [28] Zeidler E., Nonlinear Functional Analysis and its Applications IV, Springer, New York, 1988. Zbl0648.47036MR932255

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.