On backward-time behavior of the solutions to the 2-D space periodic Navier–Stokes equations

Radu Dascaliuc

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 4, page 385-401
  • ISSN: 0294-1449

How to cite

top

Dascaliuc, Radu. "On backward-time behavior of the solutions to the 2-D space periodic Navier–Stokes equations." Annales de l'I.H.P. Analyse non linéaire 22.4 (2005): 385-401. <http://eudml.org/doc/78661>.

@article{Dascaliuc2005,
author = {Dascaliuc, Radu},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {exponential growth; Sobolev norm},
language = {eng},
number = {4},
pages = {385-401},
publisher = {Elsevier},
title = {On backward-time behavior of the solutions to the 2-D space periodic Navier–Stokes equations},
url = {http://eudml.org/doc/78661},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Dascaliuc, Radu
TI - On backward-time behavior of the solutions to the 2-D space periodic Navier–Stokes equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 4
SP - 385
EP - 401
LA - eng
KW - exponential growth; Sobolev norm
UR - http://eudml.org/doc/78661
ER -

References

top
  1. [1] Bardos C., Tartar L., Sur l'unicité rétrograde des équations parabolique et quelques questiones voisines, Arch. Rational Mech.50 (1973) 10-25. Zbl0258.35039MR338517
  2. [2] Constantin P., Foias C., Navier–Stokes Equations, Chicago Lectures in Math., University of Chicago Press, Chicago, 1988. Zbl0687.35071MR972259
  3. [3] Constantin P., Foias C., Kukavica I., Majda A., Dirichlet quotients and 2-d periodic Navier–Stokes equations, J. Math. Pures Appl.76 (1997) 125-153. Zbl0874.35085MR1432371
  4. [4] Dascaliuc R., On the backward-time behavior of Burgers' original model for turbulence, Nonlinearity16 (6) (2003) 1945-1965. Zbl1120.76316MR2012849
  5. [5] C. Foias, B. Nicolaenko, Some estimates on the nonlinear term of the Navier–Stokes equation, Preprint, 2003. 
  6. [6] Kukavica I., On the behavior of the solutions of the Kuramoto–Sivashinsky equations for negative time, J. Math. Anal. Appl.166 (1992) 601-606. Zbl0788.35118MR1160948
  7. [7] I. Kukavica, M. Malcok, Backward behavior of solutions of Kuramoto–Sivashinsky equation, 2003, submitted for publication. Zbl1080.35121
  8. [8] Richards I., On the gaps between numbers which are sums of two squares, Adv. in Math.46 (1982) 1-2. Zbl0501.10047MR676985
  9. [9] Temam R., Navier–Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, 1983. Zbl0522.35002MR764933
  10. [10] Vukadinovic J., On the backwards behavior of the solutions of the 2D periodic viscous Kamassa–Holm equations, J. Dynam. Differential Equations14 (2) (2002). Zbl1007.35076MR1878244
  11. [11] J. Vukadinovic, On the backwards behavior of the solutions of the Kelvin-filtered 2D periodic Navier–Stokes equations, Ph.D. Thesis, Indiana University, 2002. Zbl1007.35076

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.