Nonoccurrence of the Lavrentiev phenomenon for nonconvex variational problems

Alexander J. Zaslavski

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 5, page 579-596
  • ISSN: 0294-1449

How to cite

top

Zaslavski, Alexander J.. "Nonoccurrence of the Lavrentiev phenomenon for nonconvex variational problems." Annales de l'I.H.P. Analyse non linéaire 22.5 (2005): 579-596. <http://eudml.org/doc/78670>.

@article{Zaslavski2005,
author = {Zaslavski, Alexander J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Lavrentiev phenomenon; Banach-valued functions; approximation in energy},
language = {eng},
number = {5},
pages = {579-596},
publisher = {Elsevier},
title = {Nonoccurrence of the Lavrentiev phenomenon for nonconvex variational problems},
url = {http://eudml.org/doc/78670},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Zaslavski, Alexander J.
TI - Nonoccurrence of the Lavrentiev phenomenon for nonconvex variational problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 5
SP - 579
EP - 596
LA - eng
KW - Lavrentiev phenomenon; Banach-valued functions; approximation in energy
UR - http://eudml.org/doc/78670
ER -

References

top
  1. [1] Alberti G., Serra Cassano F., Non-occurrence of gap for one-dimensional autonomous functionals, in: Calculus of Variations, Homogenization and Continuum Mechanics (Marseille, 1993), Ser. Adv. Math. Appl. Sci., vol. 18, World Sci., River Edge, NJ, 1994, pp. 1-17. Zbl0884.49009MR1428688
  2. [2] Angell T.S., A note on the approximation of optimal solutions of the calculus of variations, Rend. Circ. Mat. Palermo2 (1979) 258-272. Zbl0445.49006MR580263
  3. [3] Ball J.M., Mizel V.J., Singular minimizers for regular one-dimensional problems in the calculus of variations, Bull. Amer. Math. Soc.11 (1984) 143-146. Zbl0541.49010MR741726
  4. [4] Ball J.M., Mizel V.J., One-dimensional variational problems whose minimizers do not satisfy the Euler–Lagrange equation, Arch. Rational Mech. Anal.90 (1985) 325-388. Zbl0585.49002MR801585
  5. [5] Brezis H., Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973. Zbl0252.47055MR348562
  6. [6] Cesari L., Optimization – Theory and Applications, Springer-Verlag, Berlin, 1983. Zbl0506.49001MR688142
  7. [7] Clarke F.H., Vinter R.B., Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc.289 (1985) 73-98. Zbl0563.49009MR779053
  8. [8] Clarke F.H., Vinter R.B., Regularity of solutions to variational problems with polynomial Lagrangians, Bull. Polish Acad. Sci.34 (1986) 73-81. Zbl0598.49013MR850317
  9. [9] Lavrentiev M., Sur quelques problemes du calcul des variations, Ann. Math. Pura Appl.4 (1926) 107-124. JFM53.0481.02
  10. [10] Loewen P.D., On the Lavrentiev phenomenon, Canad. Math. Bull.30 (1987) 102-108. Zbl0579.49002MR879878
  11. [11] Mania B., Sopra un esempio di Lavrentieff, Boll. Un. Mat. Ital.13 (1934) 146-153. Zbl0009.15803
  12. [12] Sychev M.A., Mizel V.J., A condition on the value function both necessary and sufficient for full regularity of minimizers of one-dimensional variational problems, Trans. Amer. Math. Soc.350 (1998) 119-133. Zbl0888.49028MR1357405

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.