Multi-bump type nodal solutions having a prescribed number of nodal domains : I

Zhaoli Liu; Zhi-Qiang Wang

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 5, page 597-608
  • ISSN: 0294-1449

How to cite

top

Liu, Zhaoli, and Wang, Zhi-Qiang. "Multi-bump type nodal solutions having a prescribed number of nodal domains : I." Annales de l'I.H.P. Analyse non linéaire 22.5 (2005): 597-608. <http://eudml.org/doc/78671>.

@article{Liu2005,
author = {Liu, Zhaoli, Wang, Zhi-Qiang},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {5},
pages = {597-608},
publisher = {Elsevier},
title = {Multi-bump type nodal solutions having a prescribed number of nodal domains : I},
url = {http://eudml.org/doc/78671},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Liu, Zhaoli
AU - Wang, Zhi-Qiang
TI - Multi-bump type nodal solutions having a prescribed number of nodal domains : I
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 5
SP - 597
EP - 608
LA - eng
UR - http://eudml.org/doc/78671
ER -

References

top
  1. [1] N. Ackermann, T. Weth, Multibump solutions to nonlinear periodic Schrödinger equations in a degenerate setting, Comm. Contemp. Math., submitted for publication. Zbl1070.35083MR2151860
  2. [2] Bartsch T., Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal.186 (2001) 117-152. Zbl1211.58003MR1863294
  3. [3] Bartsch T., Chang K.C., Wang Z.-Q., On the Morse indices of sign-changing solutions for nonlinear elliptic problems, Math. Z.233 (2000) 655-677. Zbl0946.35023MR1759266
  4. [4] Bartsch T., Liu Z.L., Weth T., Sign changing solutions of superlinear Schrödinger equations, Comm. Partial Differential Equations29 (2004) 25-42. Zbl1140.35410MR2038142
  5. [5] Bartsch T., Wang Z.-Q., On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal.7 (1996) 115-131. Zbl0903.58004MR1422008
  6. [6] Brezis H., Nirenberg L., H 1 versus C 1 local minimizers, C. R. Acad. Sci. Paris Sér. I Math.317 (1993) 465-472. Zbl0803.35029MR1239032
  7. [7] Castro A., Cossio J., Neuberger J., A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math.27 (1997) 1041-1053. Zbl0907.35050MR1627654
  8. [8] Chang K.C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl., vol. 6, Birkhäuser, Boston, 1993. Zbl0779.58005MR1196690
  9. [9] Chang K.C., H 1 versus C 1 isolated critical points, C. R. Acad. Sci. Paris Sér. I Math.319 (1994) 441-446. Zbl0810.35025MR1296769
  10. [10] Coti Zelati V., Rabinowitz P.H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc.4 (1991) 627-693. Zbl0744.34045MR1119200
  11. [11] Coti Zelati V., Rabinowitz P.H., Homoclinic type solutions for a semilinear elliptic PDE on R n , Comm. Pure Appl. Math.45 (1992) 1217-1269. Zbl0785.35029MR1181725
  12. [12] Dancer E.N., Du Y., On sign-changing solutions of certain semilinear elliptic problems, Appl. Anal.56 (1995) 193-206. Zbl0835.35051MR1383886
  13. [13] Dancer E.N., Yan S., A singularly perturbed elliptic problem in bounded domains with nontrivial topology, Adv. Differential Equations4 (1999) 347-368. Zbl0947.35075MR1671254
  14. [14] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of the Second Order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  15. [15] Li S.J., Wang Z.-Q., Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems, J. Analyse Math.81 (2000) 373-396. Zbl0962.35065MR1785289
  16. [16] Li S.J., Wang Z.-Q., Ljusternik–Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc.354 (2002) 3207-3227. Zbl1219.35067MR1897397
  17. [17] Liu Z.L., Sun J.X., Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equations172 (2001) 257-299. Zbl0995.58006MR1829631
  18. [18] Liu Z.L., Wang Z.-Q., Multi-bump type nodal solutions having a prescribed number of nodal domains: II, Ann. I. H. Poincaré – AN22 (2005) 609-631. Zbl1330.35154MR2171994
  19. [19] Rabinowitz P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986. Zbl0609.58002MR845785
  20. [20] Rabinowitz P.H., A variational approach to multibump solutions of differential equations, in: Contemp. Math., vol. 198, Amer. Math. Soc., Providence, RI, 1996, pp. 31-43. Zbl0874.58019MR1409152
  21. [21] Rabinowitz P.H., Multibump solutions of differential equations: an overview, Chinese J. Math.24 (1996) 1-36. Zbl0968.37019MR1399183
  22. [22] Séré E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z.209 (1992) 27-42. Zbl0725.58017MR1143210

NotesEmbed ?

top

You must be logged in to post comments.