Multi-bump type nodal solutions having a prescribed number of nodal domains : I

Zhaoli Liu; Zhi-Qiang Wang

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 5, page 597-608
  • ISSN: 0294-1449

How to cite

top

Liu, Zhaoli, and Wang, Zhi-Qiang. "Multi-bump type nodal solutions having a prescribed number of nodal domains : I." Annales de l'I.H.P. Analyse non linéaire 22.5 (2005): 597-608. <http://eudml.org/doc/78671>.

@article{Liu2005,
author = {Liu, Zhaoli, Wang, Zhi-Qiang},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {5},
pages = {597-608},
publisher = {Elsevier},
title = {Multi-bump type nodal solutions having a prescribed number of nodal domains : I},
url = {http://eudml.org/doc/78671},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Liu, Zhaoli
AU - Wang, Zhi-Qiang
TI - Multi-bump type nodal solutions having a prescribed number of nodal domains : I
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 5
SP - 597
EP - 608
LA - eng
UR - http://eudml.org/doc/78671
ER -

References

top
  1. [1] N. Ackermann, T. Weth, Multibump solutions to nonlinear periodic Schrödinger equations in a degenerate setting, Comm. Contemp. Math., submitted for publication. Zbl1070.35083MR2151860
  2. [2] Bartsch T., Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal.186 (2001) 117-152. Zbl1211.58003MR1863294
  3. [3] Bartsch T., Chang K.C., Wang Z.-Q., On the Morse indices of sign-changing solutions for nonlinear elliptic problems, Math. Z.233 (2000) 655-677. Zbl0946.35023MR1759266
  4. [4] Bartsch T., Liu Z.L., Weth T., Sign changing solutions of superlinear Schrödinger equations, Comm. Partial Differential Equations29 (2004) 25-42. Zbl1140.35410MR2038142
  5. [5] Bartsch T., Wang Z.-Q., On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal.7 (1996) 115-131. Zbl0903.58004MR1422008
  6. [6] Brezis H., Nirenberg L., H 1 versus C 1 local minimizers, C. R. Acad. Sci. Paris Sér. I Math.317 (1993) 465-472. Zbl0803.35029MR1239032
  7. [7] Castro A., Cossio J., Neuberger J., A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math.27 (1997) 1041-1053. Zbl0907.35050MR1627654
  8. [8] Chang K.C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl., vol. 6, Birkhäuser, Boston, 1993. Zbl0779.58005MR1196690
  9. [9] Chang K.C., H 1 versus C 1 isolated critical points, C. R. Acad. Sci. Paris Sér. I Math.319 (1994) 441-446. Zbl0810.35025MR1296769
  10. [10] Coti Zelati V., Rabinowitz P.H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc.4 (1991) 627-693. Zbl0744.34045MR1119200
  11. [11] Coti Zelati V., Rabinowitz P.H., Homoclinic type solutions for a semilinear elliptic PDE on R n , Comm. Pure Appl. Math.45 (1992) 1217-1269. Zbl0785.35029MR1181725
  12. [12] Dancer E.N., Du Y., On sign-changing solutions of certain semilinear elliptic problems, Appl. Anal.56 (1995) 193-206. Zbl0835.35051MR1383886
  13. [13] Dancer E.N., Yan S., A singularly perturbed elliptic problem in bounded domains with nontrivial topology, Adv. Differential Equations4 (1999) 347-368. Zbl0947.35075MR1671254
  14. [14] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of the Second Order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  15. [15] Li S.J., Wang Z.-Q., Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems, J. Analyse Math.81 (2000) 373-396. Zbl0962.35065MR1785289
  16. [16] Li S.J., Wang Z.-Q., Ljusternik–Schnirelman theory in partially ordered Hilbert spaces, Trans. Amer. Math. Soc.354 (2002) 3207-3227. Zbl1219.35067MR1897397
  17. [17] Liu Z.L., Sun J.X., Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equations172 (2001) 257-299. Zbl0995.58006MR1829631
  18. [18] Liu Z.L., Wang Z.-Q., Multi-bump type nodal solutions having a prescribed number of nodal domains: II, Ann. I. H. Poincaré – AN22 (2005) 609-631. Zbl1330.35154MR2171994
  19. [19] Rabinowitz P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986. Zbl0609.58002MR845785
  20. [20] Rabinowitz P.H., A variational approach to multibump solutions of differential equations, in: Contemp. Math., vol. 198, Amer. Math. Soc., Providence, RI, 1996, pp. 31-43. Zbl0874.58019MR1409152
  21. [21] Rabinowitz P.H., Multibump solutions of differential equations: an overview, Chinese J. Math.24 (1996) 1-36. Zbl0968.37019MR1399183
  22. [22] Séré E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z.209 (1992) 27-42. Zbl0725.58017MR1143210

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.