Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature

Francesca Da Lio; Annamaria Montanari[1]

  • [1] Università di Bologna, Dipartimento di Matematica, Piazza di Porta S. Donato 5, 40127 Bologna (Italie)

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 1, page 1-28
  • ISSN: 0294-1449

How to cite

top

Da Lio, Francesca, and Montanari, Annamaria. "Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature." Annales de l'I.H.P. Analyse non linéaire 23.1 (2006): 1-28. <http://eudml.org/doc/78682>.

@article{DaLio2006,
affiliation = {Università di Bologna, Dipartimento di Matematica, Piazza di Porta S. Donato 5, 40127 Bologna (Italie)},
author = {Da Lio, Francesca, Montanari, Annamaria},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {1},
pages = {1-28},
publisher = {Elsevier},
title = {Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature},
url = {http://eudml.org/doc/78682},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Da Lio, Francesca
AU - Montanari, Annamaria
TI - Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 1
SP - 1
EP - 28
LA - eng
UR - http://eudml.org/doc/78682
ER -

References

top
  1. [1] Bardi M., Capuzzo Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser, Boston, 1997. Zbl0890.49011MR1484411
  2. [2] Barles G., Solutions de viscosite des equations de Hamilton–Jacobi, Collection “Mathematiques et Applications” de la SMAI, vol. 17, Springer-Verlag, 1994. Zbl0819.35002
  3. [3] Barles G., A weak Bernstein method for fully nonlinear elliptic equations, Differential Integral Equations4 (2) (1991) 241-262. Zbl0733.35014MR1081182
  4. [4] Barles G., Da Lio F., Remarks on the Dirichlet and state-constraint problems for quasilinear parabolic equations, Adv. Differential Equations8 (2003) 897-922. Zbl1073.35120MR1989355
  5. [5] Barles G., Rouy E., Souganidis P.E., Remarks on the Dirichlet problem for quasilinear elliptic and parabolic equations, in: McEneaney W.M., Yin G.G., Zhang Q. (Eds.), Stochastic Analysis, Control, Optimization and Applications. A Volume in Honor of W.H. Fleming, Birkhäuser, Boston, 1999, pp. 209-222. Zbl0928.35049MR1702961
  6. [6] Bedford E., Gaveau B., Hypersurfaces with bounded Levi form, Indiana Univ. J.27 (5) (1978) 867-873. Zbl0365.32011MR499287
  7. [7] Citti G., Lanconelli E., Montanari A., Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature, Acta Math.188 (2002) 87-128. Zbl1030.35084MR1947459
  8. [8] Crandall M.G., Lions P.L., Viscosity solutions of Hamilton–Jacobi–Bellman equations, Trans. Amer. Math. Soc.277 (1983) 1-42. Zbl0599.35024MR690039
  9. [9] Crandall M.G., Ishii H., Lions P.L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Soc.27 (1992) 1-67. Zbl0755.35015MR1118699
  10. [10] Da Lio F., Strong comparison results for quasilinear equations in annular domains and applications, Comm. Partial Differential Equations27 (1&2) (2002) 283-323. Zbl0994.35014MR1886961
  11. [11] D'Angelo J.P., Several Complex Variables and the Geometry of Real Hypersurfaces, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1993. Zbl0854.32001
  12. [12] Debiard A., Gaveau B., Problème de Dirichlet pour l'équation de Lévi, Bull. Sci. Math. (2)102 (4) (1978) 369-386. Zbl0413.35067MR517769
  13. [13] Gilgarg D., Trudinger N.S., Elliptic partial differential equations of second order, Grundlehrer Math. Wiss., vol. 224, Springer-Verlag, New York, 1977. Zbl0361.35003MR473443
  14. [14] Hörmander L., An Introduction to Complex Analysis in Several Variables, Von Nostrand, Princeton, NJ, 1966. Zbl0138.06203MR203075
  15. [15] Ishii H., Perron' s method for Hamilton–Jacobi equations, Duke Math. J.55 (1987) 369-384. Zbl0697.35030MR894587
  16. [16] Ishii H., Lions P.L., Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations83 (1) (1990) 26-78. Zbl0708.35031MR1031377
  17. [17] Hörmander L., Notions of Convexity, Progr. Math., vol. 127, Birkhäuser, Boston, 1994. Zbl0835.32001MR1301332
  18. [18] Krantz S.G., Function Theory of Several Complex Variables, AMS Chelsea Publishing, Providence, RI, 2001. Zbl1087.32001MR1846625
  19. [19] Montanari A., Lanconelli E., Pseudoconvex fully nonlinear partial differential operators. Strong comparison theorems, J. Differential Equations202 (2) (2004) 306-331. Zbl1161.35414MR2068443
  20. [20] Montanari A., Lascialfari F., The Levi Monge–Ampère equation: smooth regularity of strictly Levi convex solutions, J. Geom. Anal.14 (2) (2004) 331-353. Zbl1217.35082MR2051691
  21. [21] Range R.M., Holomorphic Functions and Integral Representation Formulas in Several Complex Variables, Springer-Verlag, New York, 1986. Zbl0591.32002MR847923
  22. [22] Slodkowski Z., Tomassini G., Weak solutions for the Levi equation and envelope of holomorphy, J. Funct. Anal.101 (2) (1991) 392-407. Zbl0744.35015MR1136942
  23. [23] Slodkowski Z., Tomassini G., The Levi equation in higher dimensions and relationships to the envelope of holomorphy, Amer. J. Math.116 (2) (1994) 479-499. Zbl0802.35050MR1269612
  24. [24] Trudinger N.S., The Dirichlet Problem for the prescribed curvature equations, Arch. Rational Mech. Anal.111 (2) (1990) 153-179. Zbl0721.35018MR1057653

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.