On global smooth solutions to the 3D Vlasov–Nordström system

Christophe Pallard

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 1, page 85-96
  • ISSN: 0294-1449

How to cite

top

Pallard, Christophe. "On global smooth solutions to the 3D Vlasov–Nordström system." Annales de l'I.H.P. Analyse non linéaire 23.1 (2006): 85-96. <http://eudml.org/doc/78685>.

@article{Pallard2006,
author = {Pallard, Christophe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {1},
pages = {85-96},
publisher = {Elsevier},
title = {On global smooth solutions to the 3D Vlasov–Nordström system},
url = {http://eudml.org/doc/78685},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Pallard, Christophe
TI - On global smooth solutions to the 3D Vlasov–Nordström system
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 1
SP - 85
EP - 96
LA - eng
UR - http://eudml.org/doc/78685
ER -

References

top
  1. [1] H. Andréasson, S. Calogero, G. Rein, Global classical solutions to the spherically symmetric Nordström–Vlasov system, Math. Proc. Cambridge Philos. Soc., in press. Zbl1119.83023MR2138578
  2. [2] F. Bouchut, F. Golse, C. Pallard, Nonresonant smoothing for coupled wave + transport equations and the Vlasov–Maxwell system, Rev. Mat. Iberoamericana, in press. Zbl1064.35097MR2124491
  3. [3] Bouchut F., Golse F., Pallard C., Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell System, Arch. Rational Mech. Anal.170 (2003) 1-15. Zbl1044.76075MR2012645
  4. [4] Calogero S., Spherically symmetric steady states of galactic dynamics in scalar gravity, Class. Quantum Grav.20 (2003) 1729-1741. Zbl1030.83018MR1981446
  5. [5] Calogero S., Lee H., The non-relativistic limit of the Nordström–Vlasov system, Comm. Math. Sci.2 (2004) 19-34. Zbl1086.83016MR2082817
  6. [6] Calogero S., Rein G., On classical solutions of the Nordström–Vlasov system, Comm. Partial Differential Equations28 (2003) 1863-1885. Zbl1060.35141MR2015405
  7. [7] S. Calogero, G. Rein, Global weak solutions to the Nordström–Vlasov system, J. Differential Equations, in press. Zbl1060.35027MR2085540
  8. [8] Friedrich S., Global small solutions of the Vlasov–Nordström system, math-ph/0407023. 
  9. [9] Gelfand I., Shilov G., Generalized Functions. Vol. I, Academic Press, New York, 1964. Zbl0115.33101MR166596
  10. [10] Glassey R., Strauss W., Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal.92 (1986) 59-90. Zbl0595.35072MR816621
  11. [11] Hawking S., Ellis G., The Large Scale Structure of Space–Time, Cambridge Monographs Math. Phys., Cambridge University Press, 1973. Zbl0265.53054MR424186
  12. [12] Hörmander L., The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1983. Zbl1028.35001MR717035
  13. [13] Klainerman S., Staffilani G., A new approach to study the Vlasov–Maxwell system, Commun. Pure Appl. Anal.1 (2002) 103-125. Zbl1037.35088MR1877669
  14. [14] Lee H., Global existence of solutions to the Nordström–Vlasov system in two space dimensions, math-ph/0312014. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.