On global smooth solutions to the 3D Vlasov–Nordström system
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 1, page 85-96
- ISSN: 0294-1449
Access Full Article
topHow to cite
topPallard, Christophe. "On global smooth solutions to the 3D Vlasov–Nordström system." Annales de l'I.H.P. Analyse non linéaire 23.1 (2006): 85-96. <http://eudml.org/doc/78685>.
@article{Pallard2006,
author = {Pallard, Christophe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {1},
pages = {85-96},
publisher = {Elsevier},
title = {On global smooth solutions to the 3D Vlasov–Nordström system},
url = {http://eudml.org/doc/78685},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Pallard, Christophe
TI - On global smooth solutions to the 3D Vlasov–Nordström system
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 1
SP - 85
EP - 96
LA - eng
UR - http://eudml.org/doc/78685
ER -
References
top- [1] H. Andréasson, S. Calogero, G. Rein, Global classical solutions to the spherically symmetric Nordström–Vlasov system, Math. Proc. Cambridge Philos. Soc., in press. Zbl1119.83023MR2138578
- [2] F. Bouchut, F. Golse, C. Pallard, Nonresonant smoothing for coupled wave + transport equations and the Vlasov–Maxwell system, Rev. Mat. Iberoamericana, in press. Zbl1064.35097MR2124491
- [3] Bouchut F., Golse F., Pallard C., Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell System, Arch. Rational Mech. Anal.170 (2003) 1-15. Zbl1044.76075MR2012645
- [4] Calogero S., Spherically symmetric steady states of galactic dynamics in scalar gravity, Class. Quantum Grav.20 (2003) 1729-1741. Zbl1030.83018MR1981446
- [5] Calogero S., Lee H., The non-relativistic limit of the Nordström–Vlasov system, Comm. Math. Sci.2 (2004) 19-34. Zbl1086.83016MR2082817
- [6] Calogero S., Rein G., On classical solutions of the Nordström–Vlasov system, Comm. Partial Differential Equations28 (2003) 1863-1885. Zbl1060.35141MR2015405
- [7] S. Calogero, G. Rein, Global weak solutions to the Nordström–Vlasov system, J. Differential Equations, in press. Zbl1060.35027MR2085540
- [8] Friedrich S., Global small solutions of the Vlasov–Nordström system, math-ph/0407023.
- [9] Gelfand I., Shilov G., Generalized Functions. Vol. I, Academic Press, New York, 1964. Zbl0115.33101MR166596
- [10] Glassey R., Strauss W., Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal.92 (1986) 59-90. Zbl0595.35072MR816621
- [11] Hawking S., Ellis G., The Large Scale Structure of Space–Time, Cambridge Monographs Math. Phys., Cambridge University Press, 1973. Zbl0265.53054MR424186
- [12] Hörmander L., The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1983. Zbl1028.35001MR717035
- [13] Klainerman S., Staffilani G., A new approach to study the Vlasov–Maxwell system, Commun. Pure Appl. Anal.1 (2002) 103-125. Zbl1037.35088MR1877669
- [14] Lee H., Global existence of solutions to the Nordström–Vlasov system in two space dimensions, math-ph/0312014.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.