Dust and self-similarity for the Smoluchowski coagulation equation

M. Escobedo; S. Mischler

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 3, page 331-362
  • ISSN: 0294-1449

How to cite

top

Escobedo, M., and Mischler, S.. "Dust and self-similarity for the Smoluchowski coagulation equation." Annales de l'I.H.P. Analyse non linéaire 23.3 (2006): 331-362. <http://eudml.org/doc/78694>.

@article{Escobedo2006,
author = {Escobedo, M., Mischler, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Smoluchowski equation; self-similarity; coagulation; moment estimates; dust phase},
language = {eng},
number = {3},
pages = {331-362},
publisher = {Elsevier},
title = {Dust and self-similarity for the Smoluchowski coagulation equation},
url = {http://eudml.org/doc/78694},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Escobedo, M.
AU - Mischler, S.
TI - Dust and self-similarity for the Smoluchowski coagulation equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 3
SP - 331
EP - 362
LA - eng
KW - Smoluchowski equation; self-similarity; coagulation; moment estimates; dust phase
UR - http://eudml.org/doc/78694
ER -

References

top
  1. [1] Aldous D.J., Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists, Bernoulli5 (1999) 3-48. Zbl0930.60096MR1673235
  2. [2] Bertoin J., The asymptotic behaviour of fragmentation processes, J. Eur. Math. Soc. (JEMS)5 (4) (2003) 395-416. Zbl1042.60042MR2017852
  3. [3] Bertoin J., Eternal solutions to Smoluchowski's coagulation equation with additive kernel and their probabilistic interpretations, Ann. Appl. Probab.12 (2) (2002) 547-564. Zbl1030.60036MR1910639
  4. [4] Bobylev A.V., Moment inequalities for the Boltzmann equation and applications to the spatially homogeneous problems, J. Statist. Phys.88 (1997) 1183-1214. Zbl0979.82049MR1478067
  5. [5] Bobylev A.V., Gamba I., Panferov V., Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions, J. Statist. Phys.116 (5–6) (2004) 1651-1682. Zbl1097.82021MR2096050
  6. [6] Boccardo L., Gallouët T., Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations17 (3–4) (1992) 641-655. Zbl0812.35043MR1163440
  7. [7] Cueille S., Sire C., Droplets nucleation and Smoluchovski's equation with growth and injection of particles, Phys. Rev. E57 (1998) 881-900. 
  8. [8] van Dongen P.G.J., Ernst M.H., Cluster size distribution in irreversible aggregation at large times, J. Phys. A18 (1985) 2779-2793. MR811992
  9. [9] van Dongen P.G.J., Ernst M.H., Solutions of Smoluchowski coagulation equation at large cluster sizes, Physica A145 (1987) 15. 
  10. [10] van Dongen P.G.J., Ernst M.H., Scaling solutions of Smoluchowski's coagulation equation, J. Statist. Phys.50 (1988) 295-329. Zbl0998.65139MR939490
  11. [11] Drake R.L., A general mathematical survey of the coagulation equation, in: Topics in Current Aerosol Research (Part 2), International Reviews in Aerosol Physics and Chemistry, Pergamon Press, Oxford, 1972, pp. 203-376. 
  12. [12] G. Duffa, N.T.-H. Nguyen-Bui, Un modèle de suies, Personal communication, 2002. 
  13. [13] Escobedo M., Mischler S., Perthame B., Gelation in coagulation and fragmentation models, Comm. Math. Phys.231 (2002) 157-188. Zbl1016.82027MR1947695
  14. [14] Escobedo M., Mischler S., Rodriguez Ricard M., On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (2005) 99-125. Zbl1130.35025MR2114413
  15. [15] Fournier N., Giet J.-S., On small particles in coagulation-fragmentation equations, J. Statist. Phys.111 (5–6) (2003) 1299-1329. Zbl1018.60061MR1975930
  16. [16] N. Fournier, P. Laurençot, Existence of self-similar solutions to Smoluckovski's coagulation equation, Preprint, 2004. 
  17. [17] Friedlander S.K., Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, Wiley, New York, 1979. 
  18. [18] Jeon I., Existence of gelling solutions for coagulation-fragmentation equations, Comm. Math. Phys.194 (1998) 541-567. Zbl0910.60083MR1631473
  19. [19] Kreer M., Penrose O., Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel, J. Statist. Phys.75 (1994) 389-407. Zbl0828.60093MR1279758
  20. [20] Laurençot Ph., Mischler S., From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A132 (5) (2002) 1219-1248. Zbl1034.35011MR1938720
  21. [21] Laurençot Ph., Mischler S., The continuous coagulation-fragmentation equations with diffusion, Arch. Rational Mech. Anal.162 (2002) 45-99. Zbl0997.45005MR1892231
  22. [22] Lê Châu-Hoàn, Etude de la classe des opérateurs m-accrétifs de L 1 Ω et accrétifs dans L Ω , Thèse de 3ème cycle, Université de Paris VI, 1977. 
  23. [23] Laurençot P., Mischler S., On coalescence equations and related models, in: Degond P., Pareschi L., Russo G. (Eds.), Modelling and Computational Methods for Kinetic Equations, Modeling and Simulation in Science, Engineering and Technology (MSSET), Birkhäuser, 2004, pp. 321-356. Zbl1105.82027MR2068589
  24. [24] P. Laurençot, S. Mischler, Coagulation and fragmentation equations, in preparation. Zbl0997.45005
  25. [25] Lee M.H., A survey on numerical solutions to the coagulation equation, J. Phys. A34 (2001) 10219. Zbl0998.65141
  26. [26] Leyvraz F., Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A16 (1983) 2861-2873. MR715741
  27. [27] Leyvraz F., Scaling theory and exactly solved models in the kinetics of irreversible aggregation, Phys. Rep.383 (2–3) (2003) 95-212. 
  28. [28] Lifshitz I.M., Slyozov V.V., The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids19 (1961) 35-50. 
  29. [29] Lushnikov A.A., Kulmala M., Nucleation burst in coagulating system, Phys. Rev. E62 (2000) 4932-4939. 
  30. [30] McGrady E.D., Ziff R.M., “Shattering” Transition in Fragmentation, Phys. Rev. Lett.58 (1987) 892. 
  31. [31] Menon G., Pego R.L., Approach to self-similarity in Smoluchowski's coagulation equation, Comm. Pure Appl. Math.57 (9) (2004) 1197-1232. Zbl1049.35048MR2059679
  32. [32] G. Menon, R.L. Pego, Dynamical scaling in Smoluchowski's coagulation equation: uniform convergence, Preprint, 2003. Zbl1130.35128
  33. [33] Mischler S., Rodriguez Ricard M., Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions, C. R. Acad. Sci. Paris, Ser. I Math.336 (2003) 407-412. Zbl1036.35072MR1979355
  34. [34] S. Mischler, Une introduction aux modèles de coagulation et fragmentation, Notes de cours de DEA, http://www.ceremade.dauphine.fr/~mischler/. 
  35. [35] Mischler S., Wennberg B., On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire16 (4) (1999) 467-501. Zbl0946.35075MR1697562
  36. [36] N. Morgan, C. Wells, M. Kraft, W. Wagner, Modelling nanoparticle dynamics: coagulation, sintering, particle inception and surface growth, Preprint No. 19, Cambridge Center for Computational Chemical Engineering, 2003. Zbl1077.82531
  37. [37] Norris J.R., Cluster coagulation, Comm. Math. Phys.209 (2000) 407-435. Zbl0953.60095MR1737990
  38. [38] Norris J.R., Smoluchowski's coagulation equation: uniqueness, non-uniqueness and a hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab.9 (1999) 78-109. Zbl0944.60082MR1682596
  39. [39] Seinfeld J.H., Atmospheric Chemistry and Physics of Air Pollution, John Wiley & Sons, New York, 1986. 
  40. [40] Smoluchowski M., Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik Z.17 (1916) 557-599. 
  41. [41] Smoluchowski M., Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Physik. Chemie92 (1917) 129-168. 
  42. [42] Stewart I.W., A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci.11 (1989) 627-648. Zbl0683.45006MR1011810
  43. [43] Stewart I.W., A uniqueness theorem for the coagulation-fragmentation equation, Math. Proc. Cambridge Philos. Soc.107 (1990) 573-578. Zbl0708.45010MR1041486
  44. [44] Pulvirenti A., Wennberg B., A Maxwellian lower bound for solutions to the Boltzmann equation, Comm. Math. Phys.183 (1997) 145-160. Zbl0866.76077MR1461954

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.