Dust and self-similarity for the Smoluchowski coagulation equation
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 3, page 331-362
- ISSN: 0294-1449
Access Full Article
topHow to cite
topEscobedo, M., and Mischler, S.. "Dust and self-similarity for the Smoluchowski coagulation equation." Annales de l'I.H.P. Analyse non linéaire 23.3 (2006): 331-362. <http://eudml.org/doc/78694>.
@article{Escobedo2006,
author = {Escobedo, M., Mischler, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Smoluchowski equation; self-similarity; coagulation; moment estimates; dust phase},
language = {eng},
number = {3},
pages = {331-362},
publisher = {Elsevier},
title = {Dust and self-similarity for the Smoluchowski coagulation equation},
url = {http://eudml.org/doc/78694},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Escobedo, M.
AU - Mischler, S.
TI - Dust and self-similarity for the Smoluchowski coagulation equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 3
SP - 331
EP - 362
LA - eng
KW - Smoluchowski equation; self-similarity; coagulation; moment estimates; dust phase
UR - http://eudml.org/doc/78694
ER -
References
top- [1] Aldous D.J., Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists, Bernoulli5 (1999) 3-48. Zbl0930.60096MR1673235
- [2] Bertoin J., The asymptotic behaviour of fragmentation processes, J. Eur. Math. Soc. (JEMS)5 (4) (2003) 395-416. Zbl1042.60042MR2017852
- [3] Bertoin J., Eternal solutions to Smoluchowski's coagulation equation with additive kernel and their probabilistic interpretations, Ann. Appl. Probab.12 (2) (2002) 547-564. Zbl1030.60036MR1910639
- [4] Bobylev A.V., Moment inequalities for the Boltzmann equation and applications to the spatially homogeneous problems, J. Statist. Phys.88 (1997) 1183-1214. Zbl0979.82049MR1478067
- [5] Bobylev A.V., Gamba I., Panferov V., Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions, J. Statist. Phys.116 (5–6) (2004) 1651-1682. Zbl1097.82021MR2096050
- [6] Boccardo L., Gallouët T., Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations17 (3–4) (1992) 641-655. Zbl0812.35043MR1163440
- [7] Cueille S., Sire C., Droplets nucleation and Smoluchovski's equation with growth and injection of particles, Phys. Rev. E57 (1998) 881-900.
- [8] van Dongen P.G.J., Ernst M.H., Cluster size distribution in irreversible aggregation at large times, J. Phys. A18 (1985) 2779-2793. MR811992
- [9] van Dongen P.G.J., Ernst M.H., Solutions of Smoluchowski coagulation equation at large cluster sizes, Physica A145 (1987) 15.
- [10] van Dongen P.G.J., Ernst M.H., Scaling solutions of Smoluchowski's coagulation equation, J. Statist. Phys.50 (1988) 295-329. Zbl0998.65139MR939490
- [11] Drake R.L., A general mathematical survey of the coagulation equation, in: Topics in Current Aerosol Research (Part 2), International Reviews in Aerosol Physics and Chemistry, Pergamon Press, Oxford, 1972, pp. 203-376.
- [12] G. Duffa, N.T.-H. Nguyen-Bui, Un modèle de suies, Personal communication, 2002.
- [13] Escobedo M., Mischler S., Perthame B., Gelation in coagulation and fragmentation models, Comm. Math. Phys.231 (2002) 157-188. Zbl1016.82027MR1947695
- [14] Escobedo M., Mischler S., Rodriguez Ricard M., On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (2005) 99-125. Zbl1130.35025MR2114413
- [15] Fournier N., Giet J.-S., On small particles in coagulation-fragmentation equations, J. Statist. Phys.111 (5–6) (2003) 1299-1329. Zbl1018.60061MR1975930
- [16] N. Fournier, P. Laurençot, Existence of self-similar solutions to Smoluckovski's coagulation equation, Preprint, 2004.
- [17] Friedlander S.K., Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, Wiley, New York, 1979.
- [18] Jeon I., Existence of gelling solutions for coagulation-fragmentation equations, Comm. Math. Phys.194 (1998) 541-567. Zbl0910.60083MR1631473
- [19] Kreer M., Penrose O., Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel, J. Statist. Phys.75 (1994) 389-407. Zbl0828.60093MR1279758
- [20] Laurençot Ph., Mischler S., From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A132 (5) (2002) 1219-1248. Zbl1034.35011MR1938720
- [21] Laurençot Ph., Mischler S., The continuous coagulation-fragmentation equations with diffusion, Arch. Rational Mech. Anal.162 (2002) 45-99. Zbl0997.45005MR1892231
- [22] Lê Châu-Hoàn, Etude de la classe des opérateurs m-accrétifs de et accrétifs dans , Thèse de 3ème cycle, Université de Paris VI, 1977.
- [23] Laurençot P., Mischler S., On coalescence equations and related models, in: Degond P., Pareschi L., Russo G. (Eds.), Modelling and Computational Methods for Kinetic Equations, Modeling and Simulation in Science, Engineering and Technology (MSSET), Birkhäuser, 2004, pp. 321-356. Zbl1105.82027MR2068589
- [24] P. Laurençot, S. Mischler, Coagulation and fragmentation equations, in preparation. Zbl0997.45005
- [25] Lee M.H., A survey on numerical solutions to the coagulation equation, J. Phys. A34 (2001) 10219. Zbl0998.65141
- [26] Leyvraz F., Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A16 (1983) 2861-2873. MR715741
- [27] Leyvraz F., Scaling theory and exactly solved models in the kinetics of irreversible aggregation, Phys. Rep.383 (2–3) (2003) 95-212.
- [28] Lifshitz I.M., Slyozov V.V., The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids19 (1961) 35-50.
- [29] Lushnikov A.A., Kulmala M., Nucleation burst in coagulating system, Phys. Rev. E62 (2000) 4932-4939.
- [30] McGrady E.D., Ziff R.M., “Shattering” Transition in Fragmentation, Phys. Rev. Lett.58 (1987) 892.
- [31] Menon G., Pego R.L., Approach to self-similarity in Smoluchowski's coagulation equation, Comm. Pure Appl. Math.57 (9) (2004) 1197-1232. Zbl1049.35048MR2059679
- [32] G. Menon, R.L. Pego, Dynamical scaling in Smoluchowski's coagulation equation: uniform convergence, Preprint, 2003. Zbl1130.35128
- [33] Mischler S., Rodriguez Ricard M., Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions, C. R. Acad. Sci. Paris, Ser. I Math.336 (2003) 407-412. Zbl1036.35072MR1979355
- [34] S. Mischler, Une introduction aux modèles de coagulation et fragmentation, Notes de cours de DEA, http://www.ceremade.dauphine.fr/~mischler/.
- [35] Mischler S., Wennberg B., On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire16 (4) (1999) 467-501. Zbl0946.35075MR1697562
- [36] N. Morgan, C. Wells, M. Kraft, W. Wagner, Modelling nanoparticle dynamics: coagulation, sintering, particle inception and surface growth, Preprint No. 19, Cambridge Center for Computational Chemical Engineering, 2003. Zbl1077.82531
- [37] Norris J.R., Cluster coagulation, Comm. Math. Phys.209 (2000) 407-435. Zbl0953.60095MR1737990
- [38] Norris J.R., Smoluchowski's coagulation equation: uniqueness, non-uniqueness and a hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab.9 (1999) 78-109. Zbl0944.60082MR1682596
- [39] Seinfeld J.H., Atmospheric Chemistry and Physics of Air Pollution, John Wiley & Sons, New York, 1986.
- [40] Smoluchowski M., Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik Z.17 (1916) 557-599.
- [41] Smoluchowski M., Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Physik. Chemie92 (1917) 129-168.
- [42] Stewart I.W., A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci.11 (1989) 627-648. Zbl0683.45006MR1011810
- [43] Stewart I.W., A uniqueness theorem for the coagulation-fragmentation equation, Math. Proc. Cambridge Philos. Soc.107 (1990) 573-578. Zbl0708.45010MR1041486
- [44] Pulvirenti A., Wennberg B., A Maxwellian lower bound for solutions to the Boltzmann equation, Comm. Math. Phys.183 (1997) 145-160. Zbl0866.76077MR1461954
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.