Kinetic formulation for heterogeneous scalar conservation laws

Anne-Laure Dalibard

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 4, page 475-498
  • ISSN: 0294-1449

How to cite

top

Dalibard, Anne-Laure. "Kinetic formulation for heterogeneous scalar conservation laws." Annales de l'I.H.P. Analyse non linéaire 23.4 (2006): 475-498. <http://eudml.org/doc/78699>.

@article{Dalibard2006,
author = {Dalibard, Anne-Laure},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {entropy solutions; existence; uniqueness; weak solutions},
language = {eng},
number = {4},
pages = {475-498},
publisher = {Elsevier},
title = {Kinetic formulation for heterogeneous scalar conservation laws},
url = {http://eudml.org/doc/78699},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Dalibard, Anne-Laure
TI - Kinetic formulation for heterogeneous scalar conservation laws
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 4
SP - 475
EP - 498
LA - eng
KW - entropy solutions; existence; uniqueness; weak solutions
UR - http://eudml.org/doc/78699
ER -

References

top
  1. [1] Dafermos C.M., Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss., vol. 325, Springer-Verlag, Berlin, 1999. Zbl0940.35002MR2169977
  2. [2] DiPerna R., Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal.88 (1985) 223-270. Zbl0616.35055MR775191
  3. [3] Kruzkhov S.N., Generalized solutions of the Cauchy problem in the large for nonlinear equations of first order, Soviet Math. Dokl.10 (1969). Zbl0202.37701
  4. [4] Kruzkhov S.N., First order quasilinear equations in several independent variables, Math. USSR-Sb.10 (1970) 217-243. Zbl0215.16203
  5. [5] Lions P.-L., Perthame B., Tadmor E., Formulation cinétique des lois de conservation scalaires multidimensionnelles, C. R. Acad. Sci. Paris, Sér. I312 (1991) 97-102. Zbl0729.49007MR1086510
  6. [6] Lions P.-L., Perthame B., Tadmor E., A kinetic formulation of multidimensional conservation laws and related equations, J. Amer. Math. Soc.7 (1994) 169-191. Zbl0820.35094MR1201239
  7. [7] Perthame B., Kinetic Formulation of Conservation Laws, Oxford Lecture Series in Math. Appl., vol. 21, Oxford University Press, New York, 2002. Zbl1030.35002MR2064166
  8. [8] Perthame B., Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pures Appl.77 (1998) 1055-1064. Zbl0919.35088MR1661021
  9. [9] Perthame B., Tadmor E., A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys.136 (1991) 501-517. Zbl0729.76070MR1099693
  10. [10] Serre D., Systèmes de lois de conservation I et II, Diderot Editeur, Arts et Sciences, 1996. MR1459988
  11. [11] Szepessy A., An existence result for scalar conservation laws using measure valued solutions, Comm. Partial Differential Equations14 (1989) 1329-1349. Zbl0704.35022MR1022989

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.