Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems
Kai Medville; Michael S. Vogelius
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 4, page 499-538
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMedville, Kai, and Vogelius, Michael S.. "Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems." Annales de l'I.H.P. Analyse non linéaire 23.4 (2006): 499-538. <http://eudml.org/doc/78700>.
@article{Medville2006,
author = {Medville, Kai, Vogelius, Michael S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Neumann boundary conditions; critical points; blow up},
language = {eng},
number = {4},
pages = {499-538},
publisher = {Elsevier},
title = {Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems},
url = {http://eudml.org/doc/78700},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Medville, Kai
AU - Vogelius, Michael S.
TI - Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 4
SP - 499
EP - 538
LA - eng
KW - nonlinear Neumann boundary conditions; critical points; blow up
UR - http://eudml.org/doc/78700
ER -
References
top- [1] Ando T., Fowler A.B., Stern F., Electronic properties of two-dimensional system, Rev. Modern Phys.54 (1982) 437-621.
- [2] Bebernes J., Eberly D., Mathematical Problems from Combustion Theory, Appl. Math. Sci., vol. 83, Springer-Verlag, Berlin, 1989. Zbl0692.35001MR1012946
- [3] Bethuel F., Brezis H., Helein F., Ginzburg–Landau Vortices, Birkhäuser, Boston, 1994. Zbl0802.35142MR1269538
- [4] Brezis H., Merle F., Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Partial Differential Equations16 (1991) 1223-1253. Zbl0746.35006MR1132783
- [5] Bryan K., Vogelius M., Singular solutions to a nonlinear elliptic boundary value problem originating from corrosion modeling, Quart. Appl. Math.60 (2002) 675-694. Zbl1030.35070MR1939006
- [6] J. Davila, A linear elliptic equation with a nonlinear boundary condition, Preprint, Rutgers University, 2001. Zbl1007.35026
- [7] Deconinck J., Current Distributions and Electrode Shape Changes in Electrochemical Systems, Lecture Notes in Engrg., vol. 75, Springer-Verlag, Berlin, 1992.
- [8] Jacobsen J., A globalization of the Implicit Function Theorem with applications to nonlinear elliptic equations, Contemp. Math.289 (2001) 249-272. Zbl1200.35147MR1864544
- [9] Kavian O., Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Math. Appl., vol. 13, Springer-Verlag, Berlin, 1993. Zbl0797.58005MR1276944
- [10] Kavian O., Vogelius M., On the existence and “blow up” of solutions to a two-dimensional nonlinear boundary-value problem arising in corrosion modelling, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 119-149, Corrigendum to same, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 729-730. Zbl1086.35504
- [11] K. Medville, Ph.D. Thesis, Rutgers University, 2004.
- [12] Medville K., Vogelius M.S., Blow-up behavior of planar harmonic functions satisfying a certain exponential Neumann boundary condition, SIAM J. Math. Anal.36 (2005) 1772-1806. Zbl1130.35067MR2178221
- [13] Nagasaki K., Suzuki T., Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal.3 (1990) 173-188. Zbl0726.35011MR1061665
- [14] Rabinowitz P., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986. Zbl0609.58002MR845785
- [15] Shamma S.E., Asymptotic behavior of Stekloff eigenvalues and eigenfunctions, SIAM J. Appl. Math.20 (1971) 482-490. Zbl0216.38402MR306697
- [16] Struwe M., Variational Methods, Ergeb. Math. Grenzgeb., vol. 34, Springer-Verlag, Berlin, 1996. Zbl0939.49001MR1411681
- [17] Vogelius M., Xu J.-M., A nonlinear elliptic boundary value problem related to corrosion modeling, Quart. Appl. Math.56 (1998) 479-505. Zbl0954.35067MR1637048
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.