Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems

Kai Medville; Michael S. Vogelius

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 4, page 499-538
  • ISSN: 0294-1449

How to cite

top

Medville, Kai, and Vogelius, Michael S.. "Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems." Annales de l'I.H.P. Analyse non linéaire 23.4 (2006): 499-538. <http://eudml.org/doc/78700>.

@article{Medville2006,
author = {Medville, Kai, Vogelius, Michael S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Neumann boundary conditions; critical points; blow up},
language = {eng},
number = {4},
pages = {499-538},
publisher = {Elsevier},
title = {Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems},
url = {http://eudml.org/doc/78700},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Medville, Kai
AU - Vogelius, Michael S.
TI - Existence and blow up of solutions to certain classes of two-dimensional nonlinear Neumann problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 4
SP - 499
EP - 538
LA - eng
KW - nonlinear Neumann boundary conditions; critical points; blow up
UR - http://eudml.org/doc/78700
ER -

References

top
  1. [1] Ando T., Fowler A.B., Stern F., Electronic properties of two-dimensional system, Rev. Modern Phys.54 (1982) 437-621. 
  2. [2] Bebernes J., Eberly D., Mathematical Problems from Combustion Theory, Appl. Math. Sci., vol. 83, Springer-Verlag, Berlin, 1989. Zbl0692.35001MR1012946
  3. [3] Bethuel F., Brezis H., Helein F., Ginzburg–Landau Vortices, Birkhäuser, Boston, 1994. Zbl0802.35142MR1269538
  4. [4] Brezis H., Merle F., Uniform estimates and blow-up behavior for solutions of - Δ u = V x 0 e x 0 e x e u in two dimensions, Comm. Partial Differential Equations16 (1991) 1223-1253. Zbl0746.35006MR1132783
  5. [5] Bryan K., Vogelius M., Singular solutions to a nonlinear elliptic boundary value problem originating from corrosion modeling, Quart. Appl. Math.60 (2002) 675-694. Zbl1030.35070MR1939006
  6. [6] J. Davila, A linear elliptic equation with a nonlinear boundary condition, Preprint, Rutgers University, 2001. Zbl1007.35026
  7. [7] Deconinck J., Current Distributions and Electrode Shape Changes in Electrochemical Systems, Lecture Notes in Engrg., vol. 75, Springer-Verlag, Berlin, 1992. 
  8. [8] Jacobsen J., A globalization of the Implicit Function Theorem with applications to nonlinear elliptic equations, Contemp. Math.289 (2001) 249-272. Zbl1200.35147MR1864544
  9. [9] Kavian O., Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Math. Appl., vol. 13, Springer-Verlag, Berlin, 1993. Zbl0797.58005MR1276944
  10. [10] Kavian O., Vogelius M., On the existence and “blow up” of solutions to a two-dimensional nonlinear boundary-value problem arising in corrosion modelling, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 119-149, Corrigendum to same, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 729-730. Zbl1086.35504
  11. [11] K. Medville, Ph.D. Thesis, Rutgers University, 2004. 
  12. [12] Medville K., Vogelius M.S., Blow-up behavior of planar harmonic functions satisfying a certain exponential Neumann boundary condition, SIAM J. Math. Anal.36 (2005) 1772-1806. Zbl1130.35067MR2178221
  13. [13] Nagasaki K., Suzuki T., Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal.3 (1990) 173-188. Zbl0726.35011MR1061665
  14. [14] Rabinowitz P., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986. Zbl0609.58002MR845785
  15. [15] Shamma S.E., Asymptotic behavior of Stekloff eigenvalues and eigenfunctions, SIAM J. Appl. Math.20 (1971) 482-490. Zbl0216.38402MR306697
  16. [16] Struwe M., Variational Methods, Ergeb. Math. Grenzgeb., vol. 34, Springer-Verlag, Berlin, 1996. Zbl0939.49001MR1411681
  17. [17] Vogelius M., Xu J.-M., A nonlinear elliptic boundary value problem related to corrosion modeling, Quart. Appl. Math.56 (1998) 479-505. Zbl0954.35067MR1637048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.