Hardy inequalities and dynamic instability of singular Yamabe metrics

Adriano Pisante

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 5, page 591-628
  • ISSN: 0294-1449

How to cite

top

Pisante, Adriano. "Hardy inequalities and dynamic instability of singular Yamabe metrics." Annales de l'I.H.P. Analyse non linéaire 23.5 (2006): 591-628. <http://eudml.org/doc/78703>.

@article{Pisante2006,
author = {Pisante, Adriano},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear heat equation; singular solutions; nonuniqueness; infinitely many weak solutions},
language = {eng},
number = {5},
pages = {591-628},
publisher = {Elsevier},
title = {Hardy inequalities and dynamic instability of singular Yamabe metrics},
url = {http://eudml.org/doc/78703},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Pisante, Adriano
TI - Hardy inequalities and dynamic instability of singular Yamabe metrics
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 5
SP - 591
EP - 628
LA - eng
KW - nonlinear heat equation; singular solutions; nonuniqueness; infinitely many weak solutions
UR - http://eudml.org/doc/78703
ER -

References

top
  1. [1] Almeida L., The regularity problem for generalized harmonic maps into homogeneous spaces, Calc. Var. Partial Differential Equations3 (1995) 193-242. Zbl0820.58013MR1386962
  2. [2] Adimurthi, Chaudhuri N., Ramaswamy M., An improved Hardy–Sobolev inequality and its application, Proc. Amer. Math. Soc.130 (2002) 489-505. Zbl0987.35049MR1862130
  3. [3] Baras P., Goldstein J., The heat equation with a singular potential, Trans. Amer. Math. Soc.284 (1984) 121-139. Zbl0556.35063MR742415
  4. [4] Brezis H., Cazenave T., A nonlinear heat equation with singular initial data, J. Anal. Math.68 (1996) 277-304. Zbl0868.35058MR1403259
  5. [5] Brezis H., Vazquez J.L., Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid10 (1997) 443-469. Zbl0894.35038MR1605678
  6. [6] Cabré X., Martel Y., Existence versus instantaneous blowup for linear heat equation with singular potentials, C. R. Acad. Sci. Paris Sér. I Math.329 (1999) 973-978. Zbl0940.35105MR1733904
  7. [7] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (1989) 271-297. Zbl0702.35085MR982351
  8. [8] Cazenave T., Weissler F., Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z.228 (1998) 83-120. Zbl0916.35109MR1617975
  9. [9] Chen C.C., Lin C.S., Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J.78 (1995) 315-334. Zbl0839.35014MR1333503
  10. [10] P. D'Ancona, V. Georgiev, Low regularity solutions to the wave map equation into the 2-D sphere, Math. Z., in press. Zbl1063.35103
  11. [11] Davies E.B., A review of Hardy inequalities, in: The Mazya Anniversary Collection, vol. 2, Oper. Theory Adv. Appl., vol. 110, Birkhäuser, Basel, 1998, pp. 55-67. Zbl0936.35121MR1747888
  12. [12] Fakhi S., Positive solutions of Δ u + u p = 0 whose singular set is a manifold with boundary, Calc. Var. Partial Differential Equations17 (2003) 179-197. Zbl1290.35095MR1986318
  13. [13] M. Feldman, T. Ilmanen, D. Knopf, Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, Preprint. Zbl1069.53036MR2058261
  14. [14] Filippas S., Tertikas A., Optimizing improved Hardy inequalities, J. Funct. Anal.192 (2002) 186-233. Zbl1030.26018MR1918494
  15. [15] Galaktionov V., Vazquez J.L., Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math.50 (1997) 1-67. Zbl0874.35057MR1423231
  16. [16] Gastel A., Nonuniqueness for the Yang–Mills heat flow, J. Differential Equations187 (2003) 391-411. Zbl1036.58011MR1949447
  17. [17] Ge Y., A remark on generalized harmonic maps into spheres, Nonlinear Anal.36 (1999) 495-506. Zbl0932.35071MR1675268
  18. [18] Giga Y., Solutions for semilinear equations in L p and regularity of weak solutions of the Navier–Stokes system, J. Differential Equations62 (1986) 186-212. Zbl0577.35058MR833416
  19. [19] Gui C., Ni W., Wang X., Further study on a nonlinear heat equation, J. Differential Equations169 (2001) 588-613. Zbl0974.35056MR1808476
  20. [20] Haraux A., Weissler F., Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J.31 (1982) 167-189. Zbl0465.35049MR648169
  21. [21] Hunt R., On L ( p , q ) spaces, Enseign. Math. XII (1996) 249-276. Zbl0181.40301MR223874
  22. [22] T. Ilmanen, Nonuniqueness in geometric heat flows, in: Lecture on Mean Curvature Flow and Related Equations, Trieste, 1995, Lecture 4, pp. 38–56, http://www.math.ethz.ch/~ilmanen/notes.ps. 
  23. [23] Korevaar N., Mazzeo R., Pacard F., Schoen R., Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math.135 (1999) 233-272. Zbl0958.53032MR1666838
  24. [24] Kozono H., Yamazaki M., Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations19 (1994) 959-1014. Zbl0803.35068MR1274547
  25. [25] Ladyzenskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, American Mathematical Society, Providence, RI, 1968. Zbl0174.15403MR241822
  26. [26] Lemarié-Rieusset P.G., Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Res. Notes Math, vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002. Zbl1034.35093MR1938147
  27. [27] Li Y.Y., Zhang L., Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math.90 (2003) 27-87. Zbl1173.35477MR2001065
  28. [28] Mazzeo R., Regularity for the singular Yamabe problem, Indiana Univ. Math. J.40 (1991) 1277-1299. Zbl0770.53032MR1142715
  29. [29] Mazzeo R., Pacard F., A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Differential Geom.44 (1996) 331-370. Zbl0869.35040MR1425579
  30. [30] Mazzeo R., Pacard F., Constant scalar curvature metrics with isolated singularities, Duke Math. J.99 (1999) 353-418. Zbl0945.53024MR1712628
  31. [31] Mazzeo R., Pollack D., Uhlenbeck K., Connected sum constructions for constant scalar curvature metrics, Topol. Methods Nonlinear Anal.6 (1995) 207-233. Zbl0866.58069MR1399537
  32. [32] Mazzeo R., Smale N., Conformally flat metrics of constant positive scalar curvature on subdomains of the sphere, J. Differential Geom.34 (1991) 581-621. Zbl0759.53029MR1139641
  33. [33] Mazzeo R., Pollack D., Uhlenbeck K., Moduli space of singular Yamabe metrics, J. Amer. Math. Soc.9 (1996) 303-344. Zbl0849.58012MR1356375
  34. [34] Mazzucato A.L., Besov–Morrey spaces: function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc.355 (2003) 1297-1364. Zbl1022.35039MR1946395
  35. [35] McOwen R., Results and open questions on the singular Yamabe problem, Discrete Contin. Dynam. Systems (Added volume II) (1998) 123-132. MR1721182
  36. [36] Y. Naito, Self-similar solutions for a semilinear heat equations with critical Sobolev exponent, Preprint. 
  37. [37] Ni W.-M., Sacks P., Singular behavior in nonlinear parabolic equations, Trans. Amer. Math. Soc.287 (1985) 657-671. Zbl0573.35046MR768731
  38. [38] O'Neil R., Convolution operators and L ( p , q ) spaces, Duke Math. J.30 (1963) 129-142. Zbl0178.47701MR146673
  39. [39] Opic B., Kufner A., Hardy-Type Inequalities, Pitman Res. Notes Math. Ser., vol. 219, Longman Scientific & Technical, Harlow, 1990. Zbl0698.26007MR1069756
  40. [40] Pacard F., The Yamabe problem on subdomains of even-dimensional spheres, Topol. Methods Nonlinear Anal.6 (1995) 137-150. Zbl0854.53037MR1391949
  41. [41] Peral I., Vazquez J.L., On the instability of the singular solution of the semilinear heat equation with exponential reaction term, Arch. Rational Mech. Anal.129 (1995) 201-224. Zbl0821.35080MR1328476
  42. [42] A. Pisante, On the harmonic heat flows for finite and infinite energy data, in preparation. 
  43. [43] Porretta A., Local existence and uniqueness of weak solutions for nonlinear parabolic equations with superlinear growth and unbounded initial data, Adv. Differential Equations6 (2001) 73-128. Zbl1004.35067MR1799681
  44. [44] Ribaud F., Youssfi A., Global solutions and self-similar solutions of semilinear wave equation, Math. Z.239 (2002) 231-262. Zbl1005.35068MR1888223
  45. [45] Schoen R., The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation, Comm. Pure Appl. Math.41 (1988) 317-392. Zbl0674.35027MR929283
  46. [46] Schoen R., Yau S.-T., Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math.92 (1988) 47-71. Zbl0658.53038MR931204
  47. [47] Souplet P., Weissler F., Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003) 213-235. Zbl1029.35106MR1961515
  48. [48] Stein E., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., vol. 32, Princeton University Press, Princeton, 1971. Zbl0232.42007MR304972
  49. [49] Tartar L., Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat. (8)1 (1998) 479-500. Zbl0929.46028MR1662313
  50. [50] Terraneo E., Non-uniqueness for a critical non-linear heat equation, Comm. Partial Differential Equations27 (2002) 185-218. Zbl1006.35045MR1886959
  51. [51] Trudinger N., Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3)22 (1968) 265-274. Zbl0159.23801MR240748
  52. [52] Vazquez J.L., Zuazua E., The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal.173 (2000) 103-153. Zbl0953.35053MR1760280
  53. [53] Wang X., On the Cauchy problem for reaction–diffusion equations, Trans. Amer. Math. Soc.337 (1993) 549-590. Zbl0815.35048MR1153016
  54. [54] Weissler F., Local existence and nonexistence for semilinear parabolic equations in L p , Indiana Univ. Math. J.29 (1980) 79-102. Zbl0443.35034MR554819
  55. [55] Weissler F., Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math.38 (1981) 29-40. Zbl0476.35043MR599472
  56. [56] Ziemer W.P., Weakly Differentiable Functions, Grad. Texts in Math, vol. 120, Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.