Hardy inequalities and dynamic instability of singular Yamabe metrics
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 5, page 591-628
- ISSN: 0294-1449
Access Full Article
topHow to cite
topPisante, Adriano. "Hardy inequalities and dynamic instability of singular Yamabe metrics." Annales de l'I.H.P. Analyse non linéaire 23.5 (2006): 591-628. <http://eudml.org/doc/78703>.
@article{Pisante2006,
author = {Pisante, Adriano},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear heat equation; singular solutions; nonuniqueness; infinitely many weak solutions},
language = {eng},
number = {5},
pages = {591-628},
publisher = {Elsevier},
title = {Hardy inequalities and dynamic instability of singular Yamabe metrics},
url = {http://eudml.org/doc/78703},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Pisante, Adriano
TI - Hardy inequalities and dynamic instability of singular Yamabe metrics
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 5
SP - 591
EP - 628
LA - eng
KW - nonlinear heat equation; singular solutions; nonuniqueness; infinitely many weak solutions
UR - http://eudml.org/doc/78703
ER -
References
top- [1] Almeida L., The regularity problem for generalized harmonic maps into homogeneous spaces, Calc. Var. Partial Differential Equations3 (1995) 193-242. Zbl0820.58013MR1386962
- [2] Adimurthi, Chaudhuri N., Ramaswamy M., An improved Hardy–Sobolev inequality and its application, Proc. Amer. Math. Soc.130 (2002) 489-505. Zbl0987.35049MR1862130
- [3] Baras P., Goldstein J., The heat equation with a singular potential, Trans. Amer. Math. Soc.284 (1984) 121-139. Zbl0556.35063MR742415
- [4] Brezis H., Cazenave T., A nonlinear heat equation with singular initial data, J. Anal. Math.68 (1996) 277-304. Zbl0868.35058MR1403259
- [5] Brezis H., Vazquez J.L., Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid10 (1997) 443-469. Zbl0894.35038MR1605678
- [6] Cabré X., Martel Y., Existence versus instantaneous blowup for linear heat equation with singular potentials, C. R. Acad. Sci. Paris Sér. I Math.329 (1999) 973-978. Zbl0940.35105MR1733904
- [7] Caffarelli L., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (1989) 271-297. Zbl0702.35085MR982351
- [8] Cazenave T., Weissler F., Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z.228 (1998) 83-120. Zbl0916.35109MR1617975
- [9] Chen C.C., Lin C.S., Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J.78 (1995) 315-334. Zbl0839.35014MR1333503
- [10] P. D'Ancona, V. Georgiev, Low regularity solutions to the wave map equation into the 2-D sphere, Math. Z., in press. Zbl1063.35103
- [11] Davies E.B., A review of Hardy inequalities, in: The Mazya Anniversary Collection, vol. 2, Oper. Theory Adv. Appl., vol. 110, Birkhäuser, Basel, 1998, pp. 55-67. Zbl0936.35121MR1747888
- [12] Fakhi S., Positive solutions of whose singular set is a manifold with boundary, Calc. Var. Partial Differential Equations17 (2003) 179-197. Zbl1290.35095MR1986318
- [13] M. Feldman, T. Ilmanen, D. Knopf, Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, Preprint. Zbl1069.53036MR2058261
- [14] Filippas S., Tertikas A., Optimizing improved Hardy inequalities, J. Funct. Anal.192 (2002) 186-233. Zbl1030.26018MR1918494
- [15] Galaktionov V., Vazquez J.L., Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math.50 (1997) 1-67. Zbl0874.35057MR1423231
- [16] Gastel A., Nonuniqueness for the Yang–Mills heat flow, J. Differential Equations187 (2003) 391-411. Zbl1036.58011MR1949447
- [17] Ge Y., A remark on generalized harmonic maps into spheres, Nonlinear Anal.36 (1999) 495-506. Zbl0932.35071MR1675268
- [18] Giga Y., Solutions for semilinear equations in and regularity of weak solutions of the Navier–Stokes system, J. Differential Equations62 (1986) 186-212. Zbl0577.35058MR833416
- [19] Gui C., Ni W., Wang X., Further study on a nonlinear heat equation, J. Differential Equations169 (2001) 588-613. Zbl0974.35056MR1808476
- [20] Haraux A., Weissler F., Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J.31 (1982) 167-189. Zbl0465.35049MR648169
- [21] Hunt R., On spaces, Enseign. Math. XII (1996) 249-276. Zbl0181.40301MR223874
- [22] T. Ilmanen, Nonuniqueness in geometric heat flows, in: Lecture on Mean Curvature Flow and Related Equations, Trieste, 1995, Lecture 4, pp. 38–56, http://www.math.ethz.ch/~ilmanen/notes.ps.
- [23] Korevaar N., Mazzeo R., Pacard F., Schoen R., Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math.135 (1999) 233-272. Zbl0958.53032MR1666838
- [24] Kozono H., Yamazaki M., Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations19 (1994) 959-1014. Zbl0803.35068MR1274547
- [25] Ladyzenskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, American Mathematical Society, Providence, RI, 1968. Zbl0174.15403MR241822
- [26] Lemarié-Rieusset P.G., Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Res. Notes Math, vol. 431, Chapman & Hall/CRC, Boca Raton, FL, 2002. Zbl1034.35093MR1938147
- [27] Li Y.Y., Zhang L., Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math.90 (2003) 27-87. Zbl1173.35477MR2001065
- [28] Mazzeo R., Regularity for the singular Yamabe problem, Indiana Univ. Math. J.40 (1991) 1277-1299. Zbl0770.53032MR1142715
- [29] Mazzeo R., Pacard F., A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Differential Geom.44 (1996) 331-370. Zbl0869.35040MR1425579
- [30] Mazzeo R., Pacard F., Constant scalar curvature metrics with isolated singularities, Duke Math. J.99 (1999) 353-418. Zbl0945.53024MR1712628
- [31] Mazzeo R., Pollack D., Uhlenbeck K., Connected sum constructions for constant scalar curvature metrics, Topol. Methods Nonlinear Anal.6 (1995) 207-233. Zbl0866.58069MR1399537
- [32] Mazzeo R., Smale N., Conformally flat metrics of constant positive scalar curvature on subdomains of the sphere, J. Differential Geom.34 (1991) 581-621. Zbl0759.53029MR1139641
- [33] Mazzeo R., Pollack D., Uhlenbeck K., Moduli space of singular Yamabe metrics, J. Amer. Math. Soc.9 (1996) 303-344. Zbl0849.58012MR1356375
- [34] Mazzucato A.L., Besov–Morrey spaces: function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc.355 (2003) 1297-1364. Zbl1022.35039MR1946395
- [35] McOwen R., Results and open questions on the singular Yamabe problem, Discrete Contin. Dynam. Systems (Added volume II) (1998) 123-132. MR1721182
- [36] Y. Naito, Self-similar solutions for a semilinear heat equations with critical Sobolev exponent, Preprint.
- [37] Ni W.-M., Sacks P., Singular behavior in nonlinear parabolic equations, Trans. Amer. Math. Soc.287 (1985) 657-671. Zbl0573.35046MR768731
- [38] O'Neil R., Convolution operators and spaces, Duke Math. J.30 (1963) 129-142. Zbl0178.47701MR146673
- [39] Opic B., Kufner A., Hardy-Type Inequalities, Pitman Res. Notes Math. Ser., vol. 219, Longman Scientific & Technical, Harlow, 1990. Zbl0698.26007MR1069756
- [40] Pacard F., The Yamabe problem on subdomains of even-dimensional spheres, Topol. Methods Nonlinear Anal.6 (1995) 137-150. Zbl0854.53037MR1391949
- [41] Peral I., Vazquez J.L., On the instability of the singular solution of the semilinear heat equation with exponential reaction term, Arch. Rational Mech. Anal.129 (1995) 201-224. Zbl0821.35080MR1328476
- [42] A. Pisante, On the harmonic heat flows for finite and infinite energy data, in preparation.
- [43] Porretta A., Local existence and uniqueness of weak solutions for nonlinear parabolic equations with superlinear growth and unbounded initial data, Adv. Differential Equations6 (2001) 73-128. Zbl1004.35067MR1799681
- [44] Ribaud F., Youssfi A., Global solutions and self-similar solutions of semilinear wave equation, Math. Z.239 (2002) 231-262. Zbl1005.35068MR1888223
- [45] Schoen R., The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation, Comm. Pure Appl. Math.41 (1988) 317-392. Zbl0674.35027MR929283
- [46] Schoen R., Yau S.-T., Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math.92 (1988) 47-71. Zbl0658.53038MR931204
- [47] Souplet P., Weissler F., Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003) 213-235. Zbl1029.35106MR1961515
- [48] Stein E., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., vol. 32, Princeton University Press, Princeton, 1971. Zbl0232.42007MR304972
- [49] Tartar L., Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat. (8)1 (1998) 479-500. Zbl0929.46028MR1662313
- [50] Terraneo E., Non-uniqueness for a critical non-linear heat equation, Comm. Partial Differential Equations27 (2002) 185-218. Zbl1006.35045MR1886959
- [51] Trudinger N., Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3)22 (1968) 265-274. Zbl0159.23801MR240748
- [52] Vazquez J.L., Zuazua E., The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal.173 (2000) 103-153. Zbl0953.35053MR1760280
- [53] Wang X., On the Cauchy problem for reaction–diffusion equations, Trans. Amer. Math. Soc.337 (1993) 549-590. Zbl0815.35048MR1153016
- [54] Weissler F., Local existence and nonexistence for semilinear parabolic equations in , Indiana Univ. Math. J.29 (1980) 79-102. Zbl0443.35034MR554819
- [55] Weissler F., Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math.38 (1981) 29-40. Zbl0476.35043MR599472
- [56] Ziemer W.P., Weakly Differentiable Functions, Grad. Texts in Math, vol. 120, Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.