A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations

Mariko Arisawa

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 5, page 695-711
  • ISSN: 0294-1449

How to cite

top

Arisawa, Mariko. "A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations." Annales de l'I.H.P. Analyse non linéaire 23.5 (2006): 695-711. <http://eudml.org/doc/78708>.

@article{Arisawa2006,
author = {Arisawa, Mariko},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Lévy operator; viscosity solutions; viscosity supersolution; viscosity subsolution},
language = {eng},
number = {5},
pages = {695-711},
publisher = {Elsevier},
title = {A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations},
url = {http://eudml.org/doc/78708},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Arisawa, Mariko
TI - A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 5
SP - 695
EP - 711
LA - eng
KW - Lévy operator; viscosity solutions; viscosity supersolution; viscosity subsolution
UR - http://eudml.org/doc/78708
ER -

References

top
  1. [1] Y. Achdou, O. Pironneau, Computational methods for option pricing, in preparation. Zbl1078.91008
  2. [2] Alvarez O., Tourin A., Viscosity solutions of nonlinear integro-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire13 (3) (1996) 293-317. Zbl0870.45002MR1395674
  3. [3] Arisawa M., Some ergodic problems for Hamilton–Jacobi equations in Hilbert space, Differential Integral Equations9 (1) (1996) 59-70. Zbl0848.35026MR1364034
  4. [4] M. Arisawa, Ergodic problems for a class of integro-differential equations, in preparation. 
  5. [5] Barles G., Buckdahn R., Pardoux E., Backward stochastic differential equations and integral-partial differential equations, Stochastics Stochastics Rep.60 (1–2) (1997) 57-83. Zbl0878.60036MR1436432
  6. [6] Bensoussan A., Lions J.L., Impulse Control and Quasi-Variational Inequalities, Gauthier-Villars, Paris, 1984. MR756234
  7. [7] Cont R., Tankov P., Financial Modelling with Jump Processes, Chapman and Hall/CRC, 2004. Zbl1052.91043MR2042661
  8. [8] Crandall M.G., Ishii H., Lions P.-L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc.27 (1) (1992). Zbl0755.35015MR1118699
  9. [9] Framstad N.C., Oksendal B., Sulem A., Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs, J. Math. Econom.35 (2) (2001) 233-257. Zbl1013.91055MR1822346
  10. [10] Garroni M.G., Menaldi J.L., Second-Order Elliptic Integro-Differential Problems, Res. Notes Math., vol. 430, Chapmam and Hall/CRC, 2002. Zbl1014.45002MR1911531
  11. [11] Gimbert F., Lions P.-L., Existence and regularity results for solutions of second-order elliptic integro-differential operators, Ricerche Mat.33 (2) (1984) 315-358. Zbl0579.45010MR810193
  12. [12] C. Imbert, A non-local regularization of first order Hamilton–Jacobi equations, J. Differential Equations, in press. Zbl1073.35059MR2121115
  13. [13] E.R. Jacobsen, K.H. Karlsen, A maximum principle for semicontinuous functions applications to integro-partial differential equations, Dept. of Math. Univ. of Oslo Pure Maths, no. 18, 2003. 
  14. [14] Miyahara Y., Minimal entropy martingale measure of jump type price processes in incomplete assets markets, Asia-Pacific Financial Markets6 (1999) 97-113. Zbl1153.91549
  15. [15] Pham H., Optimal stopping of controlled jump diffusion processes; A viscosity solution approach, J. Math. Systems Estim. Control8 (1) (1998). Zbl0899.60039MR1650147
  16. [16] Sato K.-I., Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, UK, 1999. Zbl0973.60001MR1739520
  17. [17] Sayah A., Equations d'Hamilton–Jacobi du premiere ordre avec termes integro-differentielles: parties 1 et 2, Comm. Partial Differential Equations16 (1991) 1053-1093. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.