On the Hénon equation : asymptotic profile of ground states, I

Jaeyoung Byeon; Zhi-Qiang Wang

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 6, page 803-828
  • ISSN: 0294-1449

How to cite

top

Byeon, Jaeyoung, and Wang, Zhi-Qiang. "On the Hénon equation : asymptotic profile of ground states, I." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 803-828. <http://eudml.org/doc/78713>.

@article{Byeon2006,
author = {Byeon, Jaeyoung, Wang, Zhi-Qiang},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {symmetry breaking; minimal energy solutions; asymptotic behaviour},
language = {eng},
number = {6},
pages = {803-828},
publisher = {Elsevier},
title = {On the Hénon equation : asymptotic profile of ground states, I},
url = {http://eudml.org/doc/78713},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Byeon, Jaeyoung
AU - Wang, Zhi-Qiang
TI - On the Hénon equation : asymptotic profile of ground states, I
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 803
EP - 828
LA - eng
KW - symmetry breaking; minimal energy solutions; asymptotic behaviour
UR - http://eudml.org/doc/78713
ER -

References

top
  1. [1] Brezis H., Symmetry in nonlinear PDE's, in: Differential Equations: La Pietra 1996 (Florence), Proc. Sympos. Pure Math., vol. 65, Amer. Math. Soc., Providence, 1999, pp. 1-12. Zbl0927.35038MR1662746
  2. [2] Byeon J., Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains, Comm. Partial Differential Equations22 (1997) 1731-1769. Zbl0883.35040MR1469588
  3. [3] Byeon J., Wang Z.-Q., On the Hénon equation: asymptotic profile of ground states, II, J. Differential Equations216 (2005) 78-108. Zbl1114.35070MR2158918
  4. [4] Cao D., Peng S., The asymptotic behavior of the ground state solutions for Hénon equation, J. Math. Anal. Appl.278 (2003) 1-17. Zbl1086.35036MR1963460
  5. [5] D. Cao, S. Peng, S. Yan, Asymptotic behavior of ground state solutions for the Hénon equation. Zbl1086.35036
  6. [6] Chen G., Zhou J., Ni W.M., Algorithms and visualization for solutions of nonlinear elliptic equations, Int. J. Bifurcation and Chaos10 (1997) 1731-1769. Zbl1090.65549MR1780923
  7. [7] Gidas B., Ni W.N., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979) 209-243. Zbl0425.35020MR544879
  8. [8] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. Zbl0562.35001MR737190
  9. [9] Hénon M., Numerical experiments on the stability of spherical stellar systems, Astronom. Astrophys.24 (1973) 229-238. 
  10. [10] Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., vol. 1150, Springer-Verlag, Berlin, 1985. Zbl0593.35002MR810619
  11. [11] Ni W.M., A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J.31 (1982) 801-807. Zbl0515.35033MR674869
  12. [12] Protter H., Weinberger H.F., Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. Zbl0549.35002MR762825
  13. [13] Serra E., Non radial positive solutions for the Hénon equation with critical growth, Calc. Var. Partial Differential Equations23 (2005) 301-326. Zbl1207.35147MR2142066
  14. [14] Smets D., Su J., Willem M., Non-radial ground states for the Hénon equation, Comm. Contemp. Math.4 (2002) 467-480. Zbl1160.35415MR1918755
  15. [15] Smets D., Willem M., Partial symmetry and asymptotic behavior for some elliptic variational problems, Calc. Var. Partial Differential Equations18 (2003) 57-75. Zbl1274.35026MR2001882

NotesEmbed ?

top

You must be logged in to post comments.