Ground states of nonlinear Schrödinger equations with potentials

Yongqing Li; Zhi-Qiang Wang; Jing Zeng

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 6, page 829-837
  • ISSN: 0294-1449

How to cite

top

Li, Yongqing, Wang, Zhi-Qiang, and Zeng, Jing. "Ground states of nonlinear Schrödinger equations with potentials." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 829-837. <http://eudml.org/doc/78714>.

@article{Li2006,
author = {Li, Yongqing, Wang, Zhi-Qiang, Zeng, Jing},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger equations; ground state solutions; the Ambrosetti–Rabinowitz condition},
language = {eng},
number = {6},
pages = {829-837},
publisher = {Elsevier},
title = {Ground states of nonlinear Schrödinger equations with potentials},
url = {http://eudml.org/doc/78714},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Li, Yongqing
AU - Wang, Zhi-Qiang
AU - Zeng, Jing
TI - Ground states of nonlinear Schrödinger equations with potentials
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 829
EP - 837
LA - eng
KW - nonlinear Schrödinger equations; ground state solutions; the Ambrosetti–Rabinowitz condition
UR - http://eudml.org/doc/78714
ER -

References

top
  1. [1] A. Ambrosetti, A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on R n , Progr. Math., Birkhäuser, in press. Zbl1115.35004MR2186962
  2. [2] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973) 349-381. Zbl0273.49063MR370183
  3. [3] Berestycki H., Lions P.L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
  4. [4] Ding W.-Y., Ni W.-M., On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal.91 (1986) 283-308. Zbl0616.35029MR807816
  5. [5] Jeanjean L., Tanaka K., A positive solution for a nonlinear Schrödinger equation on R N , Indiana Univ. Math. J.54 (2005) 443-464. Zbl1143.35321MR2136816
  6. [6] Lions P.L., The concentration-compactness principle in the calculus of variations. The locally compact case. I & II, Ann. Inst. H. Poincaré Anal. Non Linéaire1 (1984) 109-145, 223–283. Zbl0704.49004MR778970
  7. [7] Liu J., Wang Y., Wang Z.-Q., Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations29 (2004) 879-901. Zbl1140.35399MR2059151
  8. [8] Liu Z., Wang Z.-Q., On the Ambrosetti–Rabinowitz superlinear condition, Adv. Nonlinear Stud.4 (2004) 561-572. Zbl1113.35048MR2100913
  9. [9] Rabinowitz P.H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys.43 (1992) 270-291. Zbl0763.35087MR1162728
  10. [10] Strauss W.A., Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977) 149-162. Zbl0356.35028MR454365
  11. [11] Struwe M., Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 2000. Zbl0746.49010MR1736116
  12. [12] Willem M., Minimax Theorems, Birkhäuser, Boston, 1996. Zbl0856.49001MR1400007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.