Ground states of nonlinear Schrödinger equations with potentials
Yongqing Li; Zhi-Qiang Wang; Jing Zeng
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 6, page 829-837
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLi, Yongqing, Wang, Zhi-Qiang, and Zeng, Jing. "Ground states of nonlinear Schrödinger equations with potentials." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 829-837. <http://eudml.org/doc/78714>.
@article{Li2006,
	author = {Li, Yongqing, Wang, Zhi-Qiang, Zeng, Jing},
	journal = {Annales de l'I.H.P. Analyse non linéaire},
	keywords = {nonlinear Schrödinger equations; ground state solutions; the Ambrosetti–Rabinowitz condition},
	language = {eng},
	number = {6},
	pages = {829-837},
	publisher = {Elsevier},
	title = {Ground states of nonlinear Schrödinger equations with potentials},
	url = {http://eudml.org/doc/78714},
	volume = {23},
	year = {2006},
}
TY  - JOUR
AU  - Li, Yongqing
AU  - Wang, Zhi-Qiang
AU  - Zeng, Jing
TI  - Ground states of nonlinear Schrödinger equations with potentials
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2006
PB  - Elsevier
VL  - 23
IS  - 6
SP  - 829
EP  - 837
LA  - eng
KW  - nonlinear Schrödinger equations; ground state solutions; the Ambrosetti–Rabinowitz condition
UR  - http://eudml.org/doc/78714
ER  - 
References
top- [1] A. Ambrosetti, A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on , Progr. Math., Birkhäuser, in press. Zbl1115.35004MR2186962
- [2] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973) 349-381. Zbl0273.49063MR370183
- [3] Berestycki H., Lions P.L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
- [4] Ding W.-Y., Ni W.-M., On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal.91 (1986) 283-308. Zbl0616.35029MR807816
- [5] Jeanjean L., Tanaka K., A positive solution for a nonlinear Schrödinger equation on , Indiana Univ. Math. J.54 (2005) 443-464. Zbl1143.35321MR2136816
- [6] Lions P.L., The concentration-compactness principle in the calculus of variations. The locally compact case. I & II, Ann. Inst. H. Poincaré Anal. Non Linéaire1 (1984) 109-145, 223–283. Zbl0704.49004MR778970
- [7] Liu J., Wang Y., Wang Z.-Q., Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations29 (2004) 879-901. Zbl1140.35399MR2059151
- [8] Liu Z., Wang Z.-Q., On the Ambrosetti–Rabinowitz superlinear condition, Adv. Nonlinear Stud.4 (2004) 561-572. Zbl1113.35048MR2100913
- [9] Rabinowitz P.H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys.43 (1992) 270-291. Zbl0763.35087MR1162728
- [10] Strauss W.A., Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977) 149-162. Zbl0356.35028MR454365
- [11] Struwe M., Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 2000. Zbl0746.49010MR1736116
- [12] Willem M., Minimax Theorems, Birkhäuser, Boston, 1996. Zbl0856.49001MR1400007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 