On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations

Vasilii V. Kurta

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 6, page 839-848
  • ISSN: 0294-1449

How to cite

top

Kurta, Vasilii V.. "On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 839-848. <http://eudml.org/doc/78715>.

@article{Kurta2006,
author = {Kurta, Vasilii V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {6},
pages = {839-848},
publisher = {Elsevier},
title = {On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations},
url = {http://eudml.org/doc/78715},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Kurta, Vasilii V.
TI - On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 839
EP - 848
LA - eng
UR - http://eudml.org/doc/78715
ER -

References

top
  1. [1] Gilbarg D., Serrin J., On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math.4 (1955/56) 309-340. Zbl0071.09701MR81416
  2. [2] Hayman W.K., Kennedy P.B., Subharmonic Functions, Academic Press, 1976, (284 p.). Zbl0419.31001MR460672
  3. [3] Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, 1993, (363 p.). Zbl0780.31001MR1207810
  4. [4] Kolmogorov A.N., Fomin S.V., Introductory Real Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1970, (403 p.). Zbl0213.07305MR267052
  5. [5] Kurta V.V., About a Liouville phenomenon, C. R. Math. Acad. Sci. Paris, Ser. I338 (2004) 19-22. Zbl1046.35033MR2038077
  6. [6] V.V. Kurta, Some problems of qualitative theory for nonlinear second-order equations, Doctoral Dissert., Steklov Math. Inst., Moscow, 1994 (323 p.). Zbl0849.35042
  7. [7] Lichtenstein L., Beiträge zur Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Unendliche Folgen positiver Lösungen, Rend. Circ. Mat. Palermo33 (1912) 201-211. Zbl43.0448.01JFM43.0448.01
  8. [8] Lions J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969, (554 p.). Zbl0189.40603MR259693
  9. [9] Maz'ya V.G., Shaposhnikova T.O., Theory of Multipliers in Spaces of Differentiable Functions, Pitman, Boston, MA, 1985, (Advanced Publishing Program, 344 p.). Zbl0645.46031MR785568
  10. [10] Miklyukov V.M., Capacity and a generalized maximum principle for quasilinear equations of elliptic type, Dokl. Akad. Nauk SSSR250 (1980) 1318-1320. Zbl0553.35026MR564335
  11. [11] Miklyukov V.M., Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion, Mat. Sb.111 (153) (1980) 42-66. Zbl0428.35036MR560463
  12. [12] Moser J., On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math.14 (1961) 577-591. Zbl0111.09302MR159138
  13. [13] Reshetnyak Yu.G., Mappings with bounded distortion as extremals of integrals of Dirichlet type, Sibirsk. Mat. Zh.9 (1968) 652-666. Zbl0162.38202MR230900
  14. [14] Serrin J., Local behavior of solutions of quasi-linear equations, Acta Math.111 (1964) 247-302. Zbl0128.09101MR170096

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.