On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 6, page 839-848
- ISSN: 0294-1449
Access Full Article
topHow to cite
topKurta, Vasilii V.. "On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 839-848. <http://eudml.org/doc/78715>.
@article{Kurta2006,
author = {Kurta, Vasilii V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
language = {eng},
number = {6},
pages = {839-848},
publisher = {Elsevier},
title = {On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations},
url = {http://eudml.org/doc/78715},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Kurta, Vasilii V.
TI - On a Liouville phenomenon for entire weak supersolutions of elliptic partial differential equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 839
EP - 848
LA - eng
UR - http://eudml.org/doc/78715
ER -
References
top- [1] Gilbarg D., Serrin J., On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math.4 (1955/56) 309-340. Zbl0071.09701MR81416
- [2] Hayman W.K., Kennedy P.B., Subharmonic Functions, Academic Press, 1976, (284 p.). Zbl0419.31001MR460672
- [3] Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, 1993, (363 p.). Zbl0780.31001MR1207810
- [4] Kolmogorov A.N., Fomin S.V., Introductory Real Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1970, (403 p.). Zbl0213.07305MR267052
- [5] Kurta V.V., About a Liouville phenomenon, C. R. Math. Acad. Sci. Paris, Ser. I338 (2004) 19-22. Zbl1046.35033MR2038077
- [6] V.V. Kurta, Some problems of qualitative theory for nonlinear second-order equations, Doctoral Dissert., Steklov Math. Inst., Moscow, 1994 (323 p.). Zbl0849.35042
- [7] Lichtenstein L., Beiträge zur Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Unendliche Folgen positiver Lösungen, Rend. Circ. Mat. Palermo33 (1912) 201-211. Zbl43.0448.01JFM43.0448.01
- [8] Lions J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969, (554 p.). Zbl0189.40603MR259693
- [9] Maz'ya V.G., Shaposhnikova T.O., Theory of Multipliers in Spaces of Differentiable Functions, Pitman, Boston, MA, 1985, (Advanced Publishing Program, 344 p.). Zbl0645.46031MR785568
- [10] Miklyukov V.M., Capacity and a generalized maximum principle for quasilinear equations of elliptic type, Dokl. Akad. Nauk SSSR250 (1980) 1318-1320. Zbl0553.35026MR564335
- [11] Miklyukov V.M., Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion, Mat. Sb.111 (153) (1980) 42-66. Zbl0428.35036MR560463
- [12] Moser J., On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math.14 (1961) 577-591. Zbl0111.09302MR159138
- [13] Reshetnyak Yu.G., Mappings with bounded distortion as extremals of integrals of Dirichlet type, Sibirsk. Mat. Zh.9 (1968) 652-666. Zbl0162.38202MR230900
- [14] Serrin J., Local behavior of solutions of quasi-linear equations, Acta Math.111 (1964) 247-302. Zbl0128.09101MR170096
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.