Isolated periodic minima are unstable

Antonio J. Ureña

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 6, page 877-889
  • ISSN: 0294-1449

How to cite

top

Ureña, Antonio J.. "Isolated periodic minima are unstable." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 877-889. <http://eudml.org/doc/78718>.

@article{Ureña2006,
author = {Ureña, Antonio J.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {instability; periodic minimizers; parabolic case},
language = {eng},
number = {6},
pages = {877-889},
publisher = {Elsevier},
title = {Isolated periodic minima are unstable},
url = {http://eudml.org/doc/78718},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Ureña, Antonio J.
TI - Isolated periodic minima are unstable
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 877
EP - 889
LA - eng
KW - instability; periodic minimizers; parabolic case
UR - http://eudml.org/doc/78718
ER -

References

top
  1. [1] Carathéodory C., Calculus of Variations and Partial Differential Equations of the First Order, Chelsea, New York, 1989. Zbl0505.49001
  2. [2] Dancer E.N., Ortega R., The index of Lyapunov stable fixed points in two dimensions, J. Dynam. Differential Equations6 (4) (1994) 631-637. Zbl0811.34018MR1303278
  3. [3] Hartman P., Ordinary Differential Equations, Birkhäuser, Boston, 1982. Zbl0476.34002MR658490
  4. [4] Moser J., Selected Chapters in the Calculus of Variations. Lecture Notes by Oliver Knill, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2003. Zbl1045.37001MR1988457
  5. [5] Offin D., Hyperbolic minimizing geodesics, Trans. Amer. Math. Soc.352 (7) (2000) 3323-3338. Zbl0956.37019MR1661274
  6. [6] Offin D., Skoczylas W., Instability of periodic orbits in the restricted three body problem, in: New Advances in Celestial Mechanics and Hamiltonian Systems, Kluwer/Plenum, New York, 2004, pp. 153-168. MR2083011
  7. [7] Ortega R., The number of stable periodic solutions of time-dependent Hamiltonian systems with one degree of freedom, Ergodic Theory Dynam. Systems18 (4) (1998) 1007-1018. Zbl0946.34036MR1645346
  8. [8] Ortega R., Instability of periodic solutions obtained by minimization, in: The First 60 Years of Nonlinear Analysis of Jean Mawhin, World Scientific, 2004, pp. 189-197. Zbl1210.37042MR2128887
  9. [9] Siegel C.L., Moser J., Lectures on Celestial Mechanics, Translation by Charles I. Kalme, Die Grundlehren der mathematischen Wissenschaften, Band 187, Springer-Verlag, New York, 1971. Zbl0312.70017MR502448

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.