On the relaxation of some classes of pointwise gradient constrained energies
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 1, page 113-137
- ISSN: 0294-1449
Access Full Article
topHow to cite
topde Arcangelis, Riccardo. "On the relaxation of some classes of pointwise gradient constrained energies." Annales de l'I.H.P. Analyse non linéaire 24.1 (2007): 113-137. <http://eudml.org/doc/78723>.
@article{deArcangelis2007,
author = {de Arcangelis, Riccardo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {relaxation; pointwise gradient constraints; nonconvex variational problems; spaces; first order differential inclusions},
language = {eng},
number = {1},
pages = {113-137},
publisher = {Elsevier},
title = {On the relaxation of some classes of pointwise gradient constrained energies},
url = {http://eudml.org/doc/78723},
volume = {24},
year = {2007},
}
TY - JOUR
AU - de Arcangelis, Riccardo
TI - On the relaxation of some classes of pointwise gradient constrained energies
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 1
SP - 113
EP - 137
LA - eng
KW - relaxation; pointwise gradient constraints; nonconvex variational problems; spaces; first order differential inclusions
UR - http://eudml.org/doc/78723
ER -
References
top- [1] Attouch H., Variational Convergence for Functions and Operators, Pitman, London, 1984. Zbl0561.49012MR773850
- [2] Buttazzo G., Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Res. Notes Math. Ser., vol. 207, Longman Scientific & Technical, Harlow, 1989. Zbl0669.49005MR1020296
- [3] Carbone L., Cioranescu D., De Arcangelis R., Gaudiello A., Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set, ESAIM Control Optim. Calc. Var.10 (2004) 53-83. Zbl1072.49008MR2084255
- [4] Carbone L., Corbo Esposito A., De Arcangelis R., Homogenization of Neumann problems for unbounded functionals, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat.2-B (8) (1999) 463-491. Zbl0940.49015MR1706544
- [5] Carbone L., De Arcangelis R., On the relaxation of some classes of unbounded integral functionals, Matematiche51 (1996) 221-256, (special issue in Honour of Francesco Guglielmino). Zbl0908.49012MR1488070
- [6] Carbone L., De Arcangelis R., On the relaxation of Dirichlet minimum problems for some classes of unbounded integral functionals, Ricerche Mat.48 (Suppl.) (1999) 347-372, (special issue in memory of Ennio De Giorgi). Zbl0941.49008MR1765692
- [7] Carbone L., De Arcangelis R., On a non-standard convex regularization and the relaxation of unbounded functionals of the calculus of variations, J. Convex Anal.6 (1999) 141-162. Zbl0940.49016MR1713955
- [8] Carbone L., De Arcangelis R., Unbounded Functionals in the Calculus of Variations. Representation, Relaxation, and Homogenization, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., vol. 125, Chapman & Hall/CRC, Boca Raton, FL, 2001. Zbl1002.49018MR1910459
- [9] Carbone L., Sbordone C., Some properties of Γ-limits of integral functionals, Ann. Mat. Pura Appl. (4)122 (1979) 1-60. Zbl0474.49016
- [10] Corbo Esposito A., De Arcangelis R., Comparison results for some types of relaxation of variational integral functionals, Ann. Mat. Pura Appl. (4)164 (1993) 155-193. Zbl0931.49009MR1243954
- [11] Dacorogna B., Direct Methods in the Calculus of Variations, Appl. Math. Sci., vol. 78, Springer, Berlin, 1989. Zbl0703.49001MR990890
- [12] Dacorogna B., Marcellini P., General existence theorems for Hamilton–Jacobi equations in the scalar and vectorial cases, Acta Math.178 (1997) 1-37. Zbl0901.49027
- [13] Dacorogna B., Marcellini P., Implicit Partial Differential Equations, Progr. Nonlinear Differential Equations Appl., vol. 37, Birkhäuser, Boston, 1999. Zbl0938.35002MR1702252
- [14] Dal Maso G., An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., vol. 8, Birkhäuser, Boston, 1993. Zbl0816.49001
- [15] De Arcangelis R., Monsurrò S., Zappale E., On the relaxation and the Lavrentieff phenomenon for variational integrals with pointwise measurable gradient constraints, Calc. Var. Partial Differential Equations21 (2004) 357-400. Zbl1062.49012MR2098073
- [16] De Arcangelis R., Trombetti C., On the relaxation of some classes of Dirichlet minimum problems, Comm. Partial Differential Equations24 (1999) 975-1006. Zbl0928.49014MR1680889
- [17] De Arcangelis R., Zappale E., On the relaxation of variational integrals with pointwise continuous-type gradient constraints, Appl. Math. Optim.51 (2005) 251-277. Zbl1100.49015MR2148926
- [18] De Maio U., Durante T., Homogenization of Dirichlet problems for some types of integral functionals, Ricerche Mat.46 (1997) 177-202. Zbl0945.49006MR1615758
- [19] Duvaut G., Lions J.-L., Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., vol. 219, Springer, Berlin, 1976. Zbl0331.35002MR521262
- [20] Ekeland I., Temam R., Convex Analysis and Variational Problems, Stud. Math. Appl., vol. 1, North-Holland, Amsterdam, 1976. Zbl0322.90046MR463994
- [21] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, Stud. Adv. Math., vol. 5, CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR1158660
- [22] Giaquinta M., Modica G., Souček J., Functionals with linear growth in the calculus of variations, Comment. Math. Univ. Carolin.20 (1979) 143-156. Zbl0409.49006MR526154
- [23] Goffman C., Serrin J., Sublinear functions of measures and variational integrals, Duke Math. J.31 (1964) 159-178. Zbl0123.09804MR162902
- [24] Hüsseinov F., Relaxation of multidimensional variational problems with constraints of general form, Nonlinear Anal.45 (2001) 651-659. Zbl1001.49022MR1838952
- [25] Ishii H., Loreti P., Relaxation in an -optimization problem, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 599-615. Zbl1042.49013MR1983688
- [26] Ishii H., Loreti P., Relaxation of Hamilton–Jacobi equations, Arch. Rational Mech. Anal.169 (2003) 265-304. Zbl1036.70011
- [27] Kawohl B., On a family of torsional creep problems, J. Reine Angew. Math.410 (1990) 1-22. Zbl0701.35015MR1068797
- [28] Kinderlehrer D., Stampacchia G., An Introduction to Variational Inequalities and Their Applications, Pure Appl. Math., vol. 88, Academic Press, New York, 1980. Zbl0457.35001MR567696
- [29] Lions P.-L., Generalized Solutions of Hamilton–Jacobi Equations, Pitman Res. Notes Math. Ser., vol. 69, Longman Scientific & Technical, Harlow, 1982. Zbl0497.35001
- [30] Marcellini P., Sbordone C., Semicontinuity problems in the calculus of variations, Nonlinear Anal.4 (1980) 241-257. Zbl0537.49002MR563807
- [31] Morrey C.B., Multiple Integrals in the Calculus of Variations, Grundlehren Math. Wiss., vol. 130, Springer, Berlin, 1966. Zbl0142.38701MR202511
- [32] Rockafellar R.T., Convex Analysis, Princeton Math. Ser., vol. 28, Princeton University Press, Princeton, 1972. Zbl0193.18401
- [33] Rockafellar R.T., Wets R.J.-B., Variational Analysis, Grundlehren Math. Wiss., vol. 317, Springer, Berlin, 1998. Zbl0888.49001MR1491362
- [34] Ting T.W., Elastic-plastic torsion of simply connected cylindrical bars, Indiana Univ. Math. J.20 (1971) 1047-1076. Zbl0205.56203MR277161
- [35] Treloar L.R.G., The Physics of Rubber Elasticity, Clarendon Press, Oxford, 1975. Zbl0347.73042
- [36] Ziemer W.P., Weakly Differentiable Functions, Grad. Texts in Math., vol. 120, Springer, Berlin, 1989. Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.