On the relaxation of some classes of pointwise gradient constrained energies

Riccardo de Arcangelis

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 1, page 113-137
  • ISSN: 0294-1449

How to cite

top

de Arcangelis, Riccardo. "On the relaxation of some classes of pointwise gradient constrained energies." Annales de l'I.H.P. Analyse non linéaire 24.1 (2007): 113-137. <http://eudml.org/doc/78723>.

@article{deArcangelis2007,
author = {de Arcangelis, Riccardo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {relaxation; pointwise gradient constraints; nonconvex variational problems; spaces; first order differential inclusions},
language = {eng},
number = {1},
pages = {113-137},
publisher = {Elsevier},
title = {On the relaxation of some classes of pointwise gradient constrained energies},
url = {http://eudml.org/doc/78723},
volume = {24},
year = {2007},
}

TY - JOUR
AU - de Arcangelis, Riccardo
TI - On the relaxation of some classes of pointwise gradient constrained energies
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 1
SP - 113
EP - 137
LA - eng
KW - relaxation; pointwise gradient constraints; nonconvex variational problems; spaces; first order differential inclusions
UR - http://eudml.org/doc/78723
ER -

References

top
  1. [1] Attouch H., Variational Convergence for Functions and Operators, Pitman, London, 1984. Zbl0561.49012MR773850
  2. [2] Buttazzo G., Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Res. Notes Math. Ser., vol. 207, Longman Scientific & Technical, Harlow, 1989. Zbl0669.49005MR1020296
  3. [3] Carbone L., Cioranescu D., De Arcangelis R., Gaudiello A., Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set, ESAIM Control Optim. Calc. Var.10 (2004) 53-83. Zbl1072.49008MR2084255
  4. [4] Carbone L., Corbo Esposito A., De Arcangelis R., Homogenization of Neumann problems for unbounded functionals, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat.2-B (8) (1999) 463-491. Zbl0940.49015MR1706544
  5. [5] Carbone L., De Arcangelis R., On the relaxation of some classes of unbounded integral functionals, Matematiche51 (1996) 221-256, (special issue in Honour of Francesco Guglielmino). Zbl0908.49012MR1488070
  6. [6] Carbone L., De Arcangelis R., On the relaxation of Dirichlet minimum problems for some classes of unbounded integral functionals, Ricerche Mat.48 (Suppl.) (1999) 347-372, (special issue in memory of Ennio De Giorgi). Zbl0941.49008MR1765692
  7. [7] Carbone L., De Arcangelis R., On a non-standard convex regularization and the relaxation of unbounded functionals of the calculus of variations, J. Convex Anal.6 (1999) 141-162. Zbl0940.49016MR1713955
  8. [8] Carbone L., De Arcangelis R., Unbounded Functionals in the Calculus of Variations. Representation, Relaxation, and Homogenization, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., vol. 125, Chapman & Hall/CRC, Boca Raton, FL, 2001. Zbl1002.49018MR1910459
  9. [9] Carbone L., Sbordone C., Some properties of Γ-limits of integral functionals, Ann. Mat. Pura Appl. (4)122 (1979) 1-60. Zbl0474.49016
  10. [10] Corbo Esposito A., De Arcangelis R., Comparison results for some types of relaxation of variational integral functionals, Ann. Mat. Pura Appl. (4)164 (1993) 155-193. Zbl0931.49009MR1243954
  11. [11] Dacorogna B., Direct Methods in the Calculus of Variations, Appl. Math. Sci., vol. 78, Springer, Berlin, 1989. Zbl0703.49001MR990890
  12. [12] Dacorogna B., Marcellini P., General existence theorems for Hamilton–Jacobi equations in the scalar and vectorial cases, Acta Math.178 (1997) 1-37. Zbl0901.49027
  13. [13] Dacorogna B., Marcellini P., Implicit Partial Differential Equations, Progr. Nonlinear Differential Equations Appl., vol. 37, Birkhäuser, Boston, 1999. Zbl0938.35002MR1702252
  14. [14] Dal Maso G., An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., vol. 8, Birkhäuser, Boston, 1993. Zbl0816.49001
  15. [15] De Arcangelis R., Monsurrò S., Zappale E., On the relaxation and the Lavrentieff phenomenon for variational integrals with pointwise measurable gradient constraints, Calc. Var. Partial Differential Equations21 (2004) 357-400. Zbl1062.49012MR2098073
  16. [16] De Arcangelis R., Trombetti C., On the relaxation of some classes of Dirichlet minimum problems, Comm. Partial Differential Equations24 (1999) 975-1006. Zbl0928.49014MR1680889
  17. [17] De Arcangelis R., Zappale E., On the relaxation of variational integrals with pointwise continuous-type gradient constraints, Appl. Math. Optim.51 (2005) 251-277. Zbl1100.49015MR2148926
  18. [18] De Maio U., Durante T., Homogenization of Dirichlet problems for some types of integral functionals, Ricerche Mat.46 (1997) 177-202. Zbl0945.49006MR1615758
  19. [19] Duvaut G., Lions J.-L., Inequalities in Mechanics and Physics, Grundlehren Math. Wiss., vol. 219, Springer, Berlin, 1976. Zbl0331.35002MR521262
  20. [20] Ekeland I., Temam R., Convex Analysis and Variational Problems, Stud. Math. Appl., vol. 1, North-Holland, Amsterdam, 1976. Zbl0322.90046MR463994
  21. [21] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, Stud. Adv. Math., vol. 5, CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR1158660
  22. [22] Giaquinta M., Modica G., Souček J., Functionals with linear growth in the calculus of variations, Comment. Math. Univ. Carolin.20 (1979) 143-156. Zbl0409.49006MR526154
  23. [23] Goffman C., Serrin J., Sublinear functions of measures and variational integrals, Duke Math. J.31 (1964) 159-178. Zbl0123.09804MR162902
  24. [24] Hüsseinov F., Relaxation of multidimensional variational problems with constraints of general form, Nonlinear Anal.45 (2001) 651-659. Zbl1001.49022MR1838952
  25. [25] Ishii H., Loreti P., Relaxation in an L -optimization problem, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 599-615. Zbl1042.49013MR1983688
  26. [26] Ishii H., Loreti P., Relaxation of Hamilton–Jacobi equations, Arch. Rational Mech. Anal.169 (2003) 265-304. Zbl1036.70011
  27. [27] Kawohl B., On a family of torsional creep problems, J. Reine Angew. Math.410 (1990) 1-22. Zbl0701.35015MR1068797
  28. [28] Kinderlehrer D., Stampacchia G., An Introduction to Variational Inequalities and Their Applications, Pure Appl. Math., vol. 88, Academic Press, New York, 1980. Zbl0457.35001MR567696
  29. [29] Lions P.-L., Generalized Solutions of Hamilton–Jacobi Equations, Pitman Res. Notes Math. Ser., vol. 69, Longman Scientific & Technical, Harlow, 1982. Zbl0497.35001
  30. [30] Marcellini P., Sbordone C., Semicontinuity problems in the calculus of variations, Nonlinear Anal.4 (1980) 241-257. Zbl0537.49002MR563807
  31. [31] Morrey C.B., Multiple Integrals in the Calculus of Variations, Grundlehren Math. Wiss., vol. 130, Springer, Berlin, 1966. Zbl0142.38701MR202511
  32. [32] Rockafellar R.T., Convex Analysis, Princeton Math. Ser., vol. 28, Princeton University Press, Princeton, 1972. Zbl0193.18401
  33. [33] Rockafellar R.T., Wets R.J.-B., Variational Analysis, Grundlehren Math. Wiss., vol. 317, Springer, Berlin, 1998. Zbl0888.49001MR1491362
  34. [34] Ting T.W., Elastic-plastic torsion of simply connected cylindrical bars, Indiana Univ. Math. J.20 (1971) 1047-1076. Zbl0205.56203MR277161
  35. [35] Treloar L.R.G., The Physics of Rubber Elasticity, Clarendon Press, Oxford, 1975. Zbl0347.73042
  36. [36] Ziemer W.P., Weakly Differentiable Functions, Grad. Texts in Math., vol. 120, Springer, Berlin, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.