The gradient flow motion of boundary vortices
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 1, page 91-112
- ISSN: 0294-1449
Access Full Article
topHow to cite
topKurzke, Matthias. "The gradient flow motion of boundary vortices." Annales de l'I.H.P. Analyse non linéaire 24.1 (2007): 91-112. <http://eudml.org/doc/78730>.
@article{Kurzke2007,
author = {Kurzke, Matthias},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {gamma convergence; thin magnetic films; singularities},
language = {eng},
number = {1},
pages = {91-112},
publisher = {Elsevier},
title = {The gradient flow motion of boundary vortices},
url = {http://eudml.org/doc/78730},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Kurzke, Matthias
TI - The gradient flow motion of boundary vortices
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 1
SP - 91
EP - 112
LA - eng
KW - gamma convergence; thin magnetic films; singularities
UR - http://eudml.org/doc/78730
ER -
References
top- [1] Alberti G., Baldo S., Orlandi G., Variational convergence for functionals of Ginzburg–Landau type, Indiana Univ. Math. J.54 (2005) 1411-1472. Zbl1160.35013
- [2] Alberti G., Bouchitté G., Seppecher P., Un résultat de perturbations singulières avec la norme , C. R. Acad. Sci. Paris Sér. I Math.319 (4) (1994) 333-338. Zbl0845.49008MR1289307
- [3] Alberti G., Bouchitté G., Seppecher P., Phase transition with the line-tension effect, Arch. Rational Mech. Anal.144 (1) (1998) 1-46. Zbl0915.76093MR1657316
- [4] Almeida L., Bethuel F., Topological methods for the Ginzburg–Landau equations, J. Math. Pures Appl. (9)77 (1) (1998) 1-49. Zbl0904.35023
- [5] Bethuel F., Brezis H., Hélein F., Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser Boston Inc., Boston, MA, 1994. Zbl0802.35142
- [6] X. Cabré, N. Cónsul, Minimizers for boundary reactions: renormalized energy, location of singularities, and applications, in preparation.
- [7] Cabré X., Solà-Morales J., Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math.58 (12) (2005) 1678-1732. Zbl1102.35034MR2177165
- [8] Carbou G., Thin layers in micromagnetism, Math. Models Methods Appl. Sci.11 (9) (2001) 1529-1546. Zbl1012.82031MR1872680
- [9] DeSimone A., Kohn R.V., Müller S., Otto F., A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math.55 (11) (2002) 1408-1460. Zbl1027.82042MR1916988
- [10] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR1158660
- [11] A. Garroni, S. Müller, A variational model for dislocations in the line-tension limit, Preprint 76, Max Planck Institute for Mathematics in the Sciences, 2004. Zbl1158.74365
- [12] Gioia G., James R.D., Micromagnetics of very thin films, Proc. Roy. Soc. London Ser. A453 (1997) 213-223.
- [13] Jerrard R.L., Soner H.M., Dynamics of Ginzburg–Landau vortices, Arch. Rational Mech. Anal.142 (2) (1998) 99-125. Zbl0923.35167
- [14] Kohn R.V., Slastikov V.V., Another thin-film limit of micromagnetics, Arch. Rational Mech. Anal.178 (2) (2005) 227-245. Zbl1074.78012MR2186425
- [15] Kohn R.V., Slastikov V.V., Effective dynamics for ferromagnetic thin films: a rigorous justification, Proc. Roy. Soc. London Ser. A Math. Phys. Eng. Sci.461 (2053) (2005) 143-154. Zbl1145.82358MR2124197
- [16] Kurzke M., Boundary vortices in thin magnetic films, Calc. Var. Partial Differential Equations26 (1) (2006) 1-28. Zbl1151.35006MR2214879
- [17] Kurzke M., A nonlocal singular perturbation problem with periodic well potential, ESAIM Control Optim. Calc. Var.12 (2006) 52-63. Zbl1107.49016MR2192068
- [18] Lin F.H., Some dynamical properties of Ginzburg–Landau vortices, Comm. Pure Appl. Math.49 (4) (1996) 323-359. Zbl0853.35058
- [19] Lin F.H., A remark on the previous paper: “Some dynamical properties of Ginzburg–Landau vortices”, Comm. Pure Appl. Math.49 (4) (1996) 361-364. Zbl0853.35059
- [20] Moser R., Boundary vortices for thin ferromagnetic films, Arch. Rational Mech. Anal.174 (2004) 267-300. Zbl1099.82025MR2098108
- [21] Moser R., Ginzburg–Landau vortices for thin ferromagnetic films, Applied Mathematics Research eXpress 2003 (1) (2003) 1-32. Zbl1057.35070
- [22] Moser R., Moving boundary vortices for a thin-film limit in micromagnetics, Comm. Pure Appl. Math.58 (2005) 701-721. Zbl1080.35155MR2141896
- [23] Sandier E., Serfaty S., Gamma-convergence of gradient flows with applications to Ginzburg–Landau, Comm. Pure Appl. Math.57 (12) (2004) 1627-1672. Zbl1065.49011
- [24] Sandier E., Serfaty S., A product-estimate for Ginzburg–Landau and corollaries, J. Funct. Anal.211 (1) (2004) 219-244. Zbl1063.35144
- [25] Serfaty S., Local minimizers for the Ginzburg–Landau energy near critical magnetic field. I, Commun. Contemp. Math.1 (2) (1999) 213-254. Zbl0944.49007
- [26] Serfaty S., Local minimizers for the Ginzburg–Landau energy near critical magnetic field. II, Commun. Contemp. Math.1 (3) (1999) 295-333. Zbl0964.49005
- [27] Toland J.F., The Peierls–Nabarro and Benjamin–Ono equations, J. Funct. Anal.145 (1) (1997) 136-150. Zbl0876.35106
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.