The gradient flow motion of boundary vortices

Matthias Kurzke

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 1, page 91-112
  • ISSN: 0294-1449

How to cite

top

Kurzke, Matthias. "The gradient flow motion of boundary vortices." Annales de l'I.H.P. Analyse non linéaire 24.1 (2007): 91-112. <http://eudml.org/doc/78730>.

@article{Kurzke2007,
author = {Kurzke, Matthias},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {gamma convergence; thin magnetic films; singularities},
language = {eng},
number = {1},
pages = {91-112},
publisher = {Elsevier},
title = {The gradient flow motion of boundary vortices},
url = {http://eudml.org/doc/78730},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Kurzke, Matthias
TI - The gradient flow motion of boundary vortices
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 1
SP - 91
EP - 112
LA - eng
KW - gamma convergence; thin magnetic films; singularities
UR - http://eudml.org/doc/78730
ER -

References

top
  1. [1] Alberti G., Baldo S., Orlandi G., Variational convergence for functionals of Ginzburg–Landau type, Indiana Univ. Math. J.54 (2005) 1411-1472. Zbl1160.35013
  2. [2] Alberti G., Bouchitté G., Seppecher P., Un résultat de perturbations singulières avec la norme H 1 / 2 , C. R. Acad. Sci. Paris Sér. I Math.319 (4) (1994) 333-338. Zbl0845.49008MR1289307
  3. [3] Alberti G., Bouchitté G., Seppecher P., Phase transition with the line-tension effect, Arch. Rational Mech. Anal.144 (1) (1998) 1-46. Zbl0915.76093MR1657316
  4. [4] Almeida L., Bethuel F., Topological methods for the Ginzburg–Landau equations, J. Math. Pures Appl. (9)77 (1) (1998) 1-49. Zbl0904.35023
  5. [5] Bethuel F., Brezis H., Hélein F., Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser Boston Inc., Boston, MA, 1994. Zbl0802.35142
  6. [6] X. Cabré, N. Cónsul, Minimizers for boundary reactions: renormalized energy, location of singularities, and applications, in preparation. 
  7. [7] Cabré X., Solà-Morales J., Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math.58 (12) (2005) 1678-1732. Zbl1102.35034MR2177165
  8. [8] Carbou G., Thin layers in micromagnetism, Math. Models Methods Appl. Sci.11 (9) (2001) 1529-1546. Zbl1012.82031MR1872680
  9. [9] DeSimone A., Kohn R.V., Müller S., Otto F., A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math.55 (11) (2002) 1408-1460. Zbl1027.82042MR1916988
  10. [10] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. Zbl0804.28001MR1158660
  11. [11] A. Garroni, S. Müller, A variational model for dislocations in the line-tension limit, Preprint 76, Max Planck Institute for Mathematics in the Sciences, 2004. Zbl1158.74365
  12. [12] Gioia G., James R.D., Micromagnetics of very thin films, Proc. Roy. Soc. London Ser. A453 (1997) 213-223. 
  13. [13] Jerrard R.L., Soner H.M., Dynamics of Ginzburg–Landau vortices, Arch. Rational Mech. Anal.142 (2) (1998) 99-125. Zbl0923.35167
  14. [14] Kohn R.V., Slastikov V.V., Another thin-film limit of micromagnetics, Arch. Rational Mech. Anal.178 (2) (2005) 227-245. Zbl1074.78012MR2186425
  15. [15] Kohn R.V., Slastikov V.V., Effective dynamics for ferromagnetic thin films: a rigorous justification, Proc. Roy. Soc. London Ser. A Math. Phys. Eng. Sci.461 (2053) (2005) 143-154. Zbl1145.82358MR2124197
  16. [16] Kurzke M., Boundary vortices in thin magnetic films, Calc. Var. Partial Differential Equations26 (1) (2006) 1-28. Zbl1151.35006MR2214879
  17. [17] Kurzke M., A nonlocal singular perturbation problem with periodic well potential, ESAIM Control Optim. Calc. Var.12 (2006) 52-63. Zbl1107.49016MR2192068
  18. [18] Lin F.H., Some dynamical properties of Ginzburg–Landau vortices, Comm. Pure Appl. Math.49 (4) (1996) 323-359. Zbl0853.35058
  19. [19] Lin F.H., A remark on the previous paper: “Some dynamical properties of Ginzburg–Landau vortices”, Comm. Pure Appl. Math.49 (4) (1996) 361-364. Zbl0853.35059
  20. [20] Moser R., Boundary vortices for thin ferromagnetic films, Arch. Rational Mech. Anal.174 (2004) 267-300. Zbl1099.82025MR2098108
  21. [21] Moser R., Ginzburg–Landau vortices for thin ferromagnetic films, Applied Mathematics Research eXpress 2003 (1) (2003) 1-32. Zbl1057.35070
  22. [22] Moser R., Moving boundary vortices for a thin-film limit in micromagnetics, Comm. Pure Appl. Math.58 (2005) 701-721. Zbl1080.35155MR2141896
  23. [23] Sandier E., Serfaty S., Gamma-convergence of gradient flows with applications to Ginzburg–Landau, Comm. Pure Appl. Math.57 (12) (2004) 1627-1672. Zbl1065.49011
  24. [24] Sandier E., Serfaty S., A product-estimate for Ginzburg–Landau and corollaries, J. Funct. Anal.211 (1) (2004) 219-244. Zbl1063.35144
  25. [25] Serfaty S., Local minimizers for the Ginzburg–Landau energy near critical magnetic field. I, Commun. Contemp. Math.1 (2) (1999) 213-254. Zbl0944.49007
  26. [26] Serfaty S., Local minimizers for the Ginzburg–Landau energy near critical magnetic field. II, Commun. Contemp. Math.1 (3) (1999) 295-333. Zbl0964.49005
  27. [27] Toland J.F., The Peierls–Nabarro and Benjamin–Ono equations, J. Funct. Anal.145 (1) (1997) 136-150. Zbl0876.35106

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.