Global existence for a nonlinear Schroedinger–Chern–Simons system on a surface
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 2, page 207-225
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDemoulini, Sophia. "Global existence for a nonlinear Schroedinger–Chern–Simons system on a surface." Annales de l'I.H.P. Analyse non linéaire 24.2 (2007): 207-225. <http://eudml.org/doc/78732>.
@article{Demoulini2007,
author = {Demoulini, Sophia},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Nonlinear Schrödinger; Chern-Simons system; Global existence; Regularity; Riemannian manifold},
language = {eng},
number = {2},
pages = {207-225},
publisher = {Elsevier},
title = {Global existence for a nonlinear Schroedinger–Chern–Simons system on a surface},
url = {http://eudml.org/doc/78732},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Demoulini, Sophia
TI - Global existence for a nonlinear Schroedinger–Chern–Simons system on a surface
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 2
SP - 207
EP - 225
LA - eng
KW - Nonlinear Schrödinger; Chern-Simons system; Global existence; Regularity; Riemannian manifold
UR - http://eudml.org/doc/78732
ER -
References
top- [1] Aubin T., Nonlinear Analysis on Manifolds. Monge–Ampere Equations, Springer-Verlag, New York, 1980. Zbl0512.53044
- [2] Berge L., de Bouard A., Saut J., Blowing up time-dependent solutions of the planar Chern–Simons gauged nonlinear Schrodinger equation, Nonlinearity8 (1995) 235-253. Zbl0822.35125
- [3] Berge L., de Bouard A., Saut J., Collapse of Chern–Simons-gauged matter fields, Phys. Rev. Lett.74 (1995) 3907-3911. Zbl1020.81698
- [4] Brezis H., Gallouet T., Nonlinear Schroedinger evolution equations, Nonlinear Anal.4 (4) (1980) 677-681. Zbl0451.35023MR582536
- [5] Chae D., Choe K., Global existence in the Cauchy problem of the relativistic Chern–Simons–Higgs theory, Nonlinearity15 (2002) 747-758. Zbl1073.58014
- [6] Demoulini S., Stuart D., Gradient flow of the superconducting Ginzburg–Landau functional on the plane, Comm. Anal. Geom.5 (1) (1997) 121-198. Zbl0894.35107
- [7] Demoulini S., Periodic solutions and rigid rotation of the gauged Ginzburg–Landau vortices, in: (Berlin, 1999), International Conference on Differential Equations, vols. 1,2, World Sci. Publishing, River Edge, NJ, 2000, pp. 542-544. Zbl0969.35122
- [8] Kato T., Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I17 (1970) 241-258. Zbl0222.47011
- [9] Majda A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, 1984. Zbl0537.76001MR748308
- [10] Manton N., First order vortex dynamics, Ann. Phys.256 (1997) 114-131. Zbl0932.58014MR1447732
- [11] Palais R., Foundations of Global Nonlinear Analysis, Mathematics Lecture Note Series, W.A. Benjamin, New York, 1968. Zbl0164.11102MR248880
- [12] Stuart D., Dynamics of Abelian Higgs vortices in the near Bogomolny regime, Comm. Math. Phys.159 (1994) 51-91. Zbl0807.35141MR1257242
- [13] Stuart D., Periodic solutions of the Abelian Higgs model and rigid rotation of vortices, Geom. Funct. Anal. (GAFA)9 (1999) 1-28. Zbl0998.35053MR1708440
- [14] Taylor M., Partial Differential Equations, Applied Mathematical Sciences, vol. 117, Springer-Verlag, 1996. Zbl0869.35004MR1395147
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.