Global existence for a nonlinear Schroedinger–Chern–Simons system on a surface

Sophia Demoulini

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 2, page 207-225
  • ISSN: 0294-1449

How to cite

top

Demoulini, Sophia. "Global existence for a nonlinear Schroedinger–Chern–Simons system on a surface." Annales de l'I.H.P. Analyse non linéaire 24.2 (2007): 207-225. <http://eudml.org/doc/78732>.

@article{Demoulini2007,
author = {Demoulini, Sophia},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Nonlinear Schrödinger; Chern-Simons system; Global existence; Regularity; Riemannian manifold},
language = {eng},
number = {2},
pages = {207-225},
publisher = {Elsevier},
title = {Global existence for a nonlinear Schroedinger–Chern–Simons system on a surface},
url = {http://eudml.org/doc/78732},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Demoulini, Sophia
TI - Global existence for a nonlinear Schroedinger–Chern–Simons system on a surface
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 2
SP - 207
EP - 225
LA - eng
KW - Nonlinear Schrödinger; Chern-Simons system; Global existence; Regularity; Riemannian manifold
UR - http://eudml.org/doc/78732
ER -

References

top
  1. [1] Aubin T., Nonlinear Analysis on Manifolds. Monge–Ampere Equations, Springer-Verlag, New York, 1980. Zbl0512.53044
  2. [2] Berge L., de Bouard A., Saut J., Blowing up time-dependent solutions of the planar Chern–Simons gauged nonlinear Schrodinger equation, Nonlinearity8 (1995) 235-253. Zbl0822.35125
  3. [3] Berge L., de Bouard A., Saut J., Collapse of Chern–Simons-gauged matter fields, Phys. Rev. Lett.74 (1995) 3907-3911. Zbl1020.81698
  4. [4] Brezis H., Gallouet T., Nonlinear Schroedinger evolution equations, Nonlinear Anal.4 (4) (1980) 677-681. Zbl0451.35023MR582536
  5. [5] Chae D., Choe K., Global existence in the Cauchy problem of the relativistic Chern–Simons–Higgs theory, Nonlinearity15 (2002) 747-758. Zbl1073.58014
  6. [6] Demoulini S., Stuart D., Gradient flow of the superconducting Ginzburg–Landau functional on the plane, Comm. Anal. Geom.5 (1) (1997) 121-198. Zbl0894.35107
  7. [7] Demoulini S., Periodic solutions and rigid rotation of the gauged Ginzburg–Landau vortices, in: (Berlin, 1999), International Conference on Differential Equations, vols. 1,2, World Sci. Publishing, River Edge, NJ, 2000, pp. 542-544. Zbl0969.35122
  8. [8] Kato T., Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I17 (1970) 241-258. Zbl0222.47011
  9. [9] Majda A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, 1984. Zbl0537.76001MR748308
  10. [10] Manton N., First order vortex dynamics, Ann. Phys.256 (1997) 114-131. Zbl0932.58014MR1447732
  11. [11] Palais R., Foundations of Global Nonlinear Analysis, Mathematics Lecture Note Series, W.A. Benjamin, New York, 1968. Zbl0164.11102MR248880
  12. [12] Stuart D., Dynamics of Abelian Higgs vortices in the near Bogomolny regime, Comm. Math. Phys.159 (1994) 51-91. Zbl0807.35141MR1257242
  13. [13] Stuart D., Periodic solutions of the Abelian Higgs model and rigid rotation of vortices, Geom. Funct. Anal. (GAFA)9 (1999) 1-28. Zbl0998.35053MR1708440
  14. [14] Taylor M., Partial Differential Equations, Applied Mathematical Sciences, vol. 117, Springer-Verlag, 1996. Zbl0869.35004MR1395147

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.