An evolutionary double-well problem

Qi Tang; Kewei Zhang

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 3, page 341-359
  • ISSN: 0294-1449

How to cite

top

Tang, Qi, and Zhang, Kewei. "An evolutionary double-well problem." Annales de l'I.H.P. Analyse non linéaire 24.3 (2007): 341-359. <http://eudml.org/doc/78738>.

@article{Tang2007,
author = {Tang, Qi, Zhang, Kewei},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {long time behaviour; semi-flow; quasiconvex double-well function},
language = {eng},
number = {3},
pages = {341-359},
publisher = {Elsevier},
title = {An evolutionary double-well problem},
url = {http://eudml.org/doc/78738},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Tang, Qi
AU - Zhang, Kewei
TI - An evolutionary double-well problem
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 3
SP - 341
EP - 359
LA - eng
KW - long time behaviour; semi-flow; quasiconvex double-well function
UR - http://eudml.org/doc/78738
ER -

References

top
  1. [1] Acerbi E., Fusco N., Semi-continuity problems in the calculus of variations, Arch. Ration. Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
  2. [2] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
  3. [3] Ball J.M., A version of the fundamental theorem of Young measures, in: Rascle M., Serre D., Slemrod M. (Eds.), Partial Differential Equations and Continuum Models of Phase Transitions, Lecture Notes in Phys., vol. 334, Springer, Berlin, 1989, pp. 207-215. Zbl0991.49500MR1036070
  4. [4] Ball J.M., Continuity properties and global attractors of generalized semi-flows and the Navier–Stokes equations, J. Nonlinear Sci.7 (5) (1997) 475-502. Zbl0903.58020
  5. [5] Bhattacharya K., Firoozye N.B., James R.D., Kohn R.V., Restrictions on microstructures, Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 843-878. Zbl0808.73063MR1303758
  6. [6] Dacorogna B., Direct Methods in the Calculus of Variations, Springer-Verlag, 1989. Zbl0703.49001MR990890
  7. [7] Demoulini S., Weak solutions for a class of nonlinear systems of visco-elasticity, Arch. Ration. Mech. Anal.155 (2000) 299-334. Zbl0991.74021MR1808121
  8. [8] Evans L.C., An unusual minimization principle for parabolic gradient flows, SIAM J. Math. Anal.27 (1) (1996) 1-4. Zbl0857.35057MR1373143
  9. [9] Fuchs M., Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions, Analysis7 (1987) 83-93. Zbl0624.35032MR885719
  10. [10] Giaquinta M., Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhäuser, Basel, 1993. Zbl0786.35001MR1239172
  11. [11] Hale J., Asymptotic Behaviour of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. Zbl0642.58013MR941371
  12. [12] Kohn R.V., The relaxation of a double-well energy, Cont. Mech. Therm.3 (1991) 981-1000. Zbl0825.73029MR1122017
  13. [13] Kinderlehrer D., Pedregal P., Characterizations of Young measures generated by gradients, Arch. Ration. Mech. Anal.115 (4) (1991) 329-365. Zbl0754.49020MR1120852
  14. [14] Kinderlehrer D., Pedregal P., Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal.4 (1) (1994) 59-90. Zbl0808.46046MR1274138
  15. [15] J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions, Ph.D. Thesis, Technical University of Denmark, Lyngby, 1994. 
  16. [16] Morrey C.B., Multiple Integrals in the Calculus of Variations, Springer, 1966. Zbl0142.38701MR202511
  17. [17] Muller S., Sverak V., Unexpected solutions of first and second order partial differential equations, Special Volume Proc. ICM Volume II Documenta Math. (1998) 691-702. Zbl0896.35029MR1648117
  18. [18] M.O. Rieger, Young measure solutions for non-convex elasto-dynamics, Preprint. Zbl1039.74005
  19. [19] Sverak V., Rank-one convexity does not imply quasi-convexity, Proc. Roy. Soc. Edinburgh Sect. A120 (1992) 185-189. Zbl0777.49015MR1149994
  20. [20] Tang Q., Wang S., Time dependent Ginzburg–Landau equations of superconductivity, Physica D88 (1995) 139-166. Zbl0900.35371
  21. [21] Q. Tang, K.W. Zhang, Convergence of heat flow solutions under multi-well potential energy, Preprint. 
  22. [22] Zhang K.-W., On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form, in: Chern S.S. (Ed.), Partial Differential Equations, Proc. Sympos., Tianjin, 1986, Lecture Notes on Math., vol. 1306, Springer-Verlag, 1988, pp. 262-277. Zbl0672.35026MR1032785
  23. [23] Zhang K.W., Biting theorems for Jacobians and their applications, Ann. Inst. H. Poincaré7 (1990) 345-365. Zbl0717.49012MR1067780
  24. [24] Zhang K.W., A two-well structure and intrinsic mountain pass points, Cal. Var. Partial Differential Equations13 (2001) 231-264. Zbl0997.49013MR1861099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.