An evolutionary double-well problem
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 3, page 341-359
- ISSN: 0294-1449
Access Full Article
topHow to cite
topTang, Qi, and Zhang, Kewei. "An evolutionary double-well problem." Annales de l'I.H.P. Analyse non linéaire 24.3 (2007): 341-359. <http://eudml.org/doc/78738>.
@article{Tang2007,
author = {Tang, Qi, Zhang, Kewei},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {long time behaviour; semi-flow; quasiconvex double-well function},
language = {eng},
number = {3},
pages = {341-359},
publisher = {Elsevier},
title = {An evolutionary double-well problem},
url = {http://eudml.org/doc/78738},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Tang, Qi
AU - Zhang, Kewei
TI - An evolutionary double-well problem
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 3
SP - 341
EP - 359
LA - eng
KW - long time behaviour; semi-flow; quasiconvex double-well function
UR - http://eudml.org/doc/78738
ER -
References
top- [1] Acerbi E., Fusco N., Semi-continuity problems in the calculus of variations, Arch. Ration. Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
- [2] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
- [3] Ball J.M., A version of the fundamental theorem of Young measures, in: Rascle M., Serre D., Slemrod M. (Eds.), Partial Differential Equations and Continuum Models of Phase Transitions, Lecture Notes in Phys., vol. 334, Springer, Berlin, 1989, pp. 207-215. Zbl0991.49500MR1036070
- [4] Ball J.M., Continuity properties and global attractors of generalized semi-flows and the Navier–Stokes equations, J. Nonlinear Sci.7 (5) (1997) 475-502. Zbl0903.58020
- [5] Bhattacharya K., Firoozye N.B., James R.D., Kohn R.V., Restrictions on microstructures, Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 843-878. Zbl0808.73063MR1303758
- [6] Dacorogna B., Direct Methods in the Calculus of Variations, Springer-Verlag, 1989. Zbl0703.49001MR990890
- [7] Demoulini S., Weak solutions for a class of nonlinear systems of visco-elasticity, Arch. Ration. Mech. Anal.155 (2000) 299-334. Zbl0991.74021MR1808121
- [8] Evans L.C., An unusual minimization principle for parabolic gradient flows, SIAM J. Math. Anal.27 (1) (1996) 1-4. Zbl0857.35057MR1373143
- [9] Fuchs M., Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions, Analysis7 (1987) 83-93. Zbl0624.35032MR885719
- [10] Giaquinta M., Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhäuser, Basel, 1993. Zbl0786.35001MR1239172
- [11] Hale J., Asymptotic Behaviour of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. Zbl0642.58013MR941371
- [12] Kohn R.V., The relaxation of a double-well energy, Cont. Mech. Therm.3 (1991) 981-1000. Zbl0825.73029MR1122017
- [13] Kinderlehrer D., Pedregal P., Characterizations of Young measures generated by gradients, Arch. Ration. Mech. Anal.115 (4) (1991) 329-365. Zbl0754.49020MR1120852
- [14] Kinderlehrer D., Pedregal P., Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal.4 (1) (1994) 59-90. Zbl0808.46046MR1274138
- [15] J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions, Ph.D. Thesis, Technical University of Denmark, Lyngby, 1994.
- [16] Morrey C.B., Multiple Integrals in the Calculus of Variations, Springer, 1966. Zbl0142.38701MR202511
- [17] Muller S., Sverak V., Unexpected solutions of first and second order partial differential equations, Special Volume Proc. ICM Volume II Documenta Math. (1998) 691-702. Zbl0896.35029MR1648117
- [18] M.O. Rieger, Young measure solutions for non-convex elasto-dynamics, Preprint. Zbl1039.74005
- [19] Sverak V., Rank-one convexity does not imply quasi-convexity, Proc. Roy. Soc. Edinburgh Sect. A120 (1992) 185-189. Zbl0777.49015MR1149994
- [20] Tang Q., Wang S., Time dependent Ginzburg–Landau equations of superconductivity, Physica D88 (1995) 139-166. Zbl0900.35371
- [21] Q. Tang, K.W. Zhang, Convergence of heat flow solutions under multi-well potential energy, Preprint.
- [22] Zhang K.-W., On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form, in: Chern S.S. (Ed.), Partial Differential Equations, Proc. Sympos., Tianjin, 1986, Lecture Notes on Math., vol. 1306, Springer-Verlag, 1988, pp. 262-277. Zbl0672.35026MR1032785
- [23] Zhang K.W., Biting theorems for Jacobians and their applications, Ann. Inst. H. Poincaré7 (1990) 345-365. Zbl0717.49012MR1067780
- [24] Zhang K.W., A two-well structure and intrinsic mountain pass points, Cal. Var. Partial Differential Equations13 (2001) 231-264. Zbl0997.49013MR1861099
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.