Interior estimates for some semilinear elliptic problem with critical nonlinearity
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 4, page 629-644
- ISSN: 0294-1449
Access Full Article
topHow to cite
topEsposito, Pierpaolo. "Interior estimates for some semilinear elliptic problem with critical nonlinearity." Annales de l'I.H.P. Analyse non linéaire 24.4 (2007): 629-644. <http://eudml.org/doc/78753>.
@article{Esposito2007,
author = {Esposito, Pierpaolo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {compactness; critical exponent; singular perturbations; blow-up analysis},
language = {eng},
number = {4},
pages = {629-644},
publisher = {Elsevier},
title = {Interior estimates for some semilinear elliptic problem with critical nonlinearity},
url = {http://eudml.org/doc/78753},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Esposito, Pierpaolo
TI - Interior estimates for some semilinear elliptic problem with critical nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 4
SP - 629
EP - 644
LA - eng
KW - compactness; critical exponent; singular perturbations; blow-up analysis
UR - http://eudml.org/doc/78753
ER -
References
top- [1] Adimurthi, Mancini G., Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math.456 (1994) 1-18. Zbl0804.35036MR1301449
- [2] Adimurthi, Mancini G., The Neumann problem for elliptic equations with critical nonlinearity, in: Nonlinear Analysis, Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, 1991, pp. 9-25. Zbl0836.35048MR1205370
- [3] Adimurthi, Mancini G., Yadava S.L., The role of the mean curvature in semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations20 (3–4) (1995) 591-631. Zbl0847.35047
- [4] Bahri A., Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, vol. 182, Longman Scientific & Technical, Harlow, 1989, copublished in the United States with John Wiley & Sons, Inc., New York. Zbl0676.58021MR1019828
- [5] Caffarelli L.A., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (3) (1989) 271-297. Zbl0702.35085MR982351
- [6] Cao D., Noussair E.S., Yan S., Existence and nonexistence of interior-peaked solution for a nonlinear Neumann problem, Pacific J. Math.200 (1) (2001) 19-41. Zbl1140.35440MR1863405
- [7] Castorina D., Mancini G., Non existence of bounded-energy solutions for some semilinear elliptic equations with a large parameter, Rend. Sem. Mat. Univ. Padova110 (2003) 147-160. Zbl1121.35053MR2033005
- [8] Druet O., From one bubble to several bubbles: the low-dimensional case, J. Differential Geom.63 (3) (2003) 399-473. Zbl1070.53017MR2015469
- [9] Druet O., Compactness for Yamabe metrics in low dimensions, Int. Math. Res. Not.23 (2004) 1143-1191. Zbl1085.53029MR2041549
- [10] Druet O., Hebey E., Robert F., Blow-Up Theory for Elliptic PDEs in Riemannian Geometry, Mathematical Notes, vol. 45, Princeton University Press, Princeton, NJ, 2004. Zbl1059.58017MR2063399
- [11] Druet O., Hebey E., Robert F., A -theory for the blow-up of second order elliptic equations of critical Sobolev growth, Electron. Res. Announc. Amer. Math. Soc.9 (2003) 19-25, (electronic). Zbl1061.58020MR1988868
- [12] Druet O., Hebey E., Vaugon M., Pohozaev type obstructions and solutions of bounded energy for quasilinear elliptic equations with critical Sobolev growth. The conformally flat case, Nonlinear Anal.51 (1) (2002) 79-94. Zbl1066.35032MR1915742
- [13] Ghoussoub N., Gui C., Zhu M., On a singularly perturbed Neumann problem with the critical exponent, Comm. Partial Differential Equations26 (11–12) (2001) 1929-1946. Zbl0997.35021
- [14] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, 1983. Zbl0562.35001MR737190
- [15] Gui C., Lin C.S., Estimates for boundary-bubbling solutions to an elliptic Neumann problem, J. Reine Angew. Math.546 (2002) 201-235. Zbl1136.35380MR1900999
- [16] Li Y.Y., Prescribing scalar curvature on and related problems. I, J. Differential Equations120 (2) (1995) 319-410. Zbl0827.53039MR1347349
- [17] Lin C.S., Ni W.M., Takagi I., Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations72 (1) (1988) 1-27. Zbl0676.35030MR929196
- [18] Meinhardt H., Models of Biological Pattern Formation, Academic Press, London, 1982.
- [19] Pohozaev S.I., Eigenfunctions of the equation , Soviet Math. Dokl.6 (1965) 1408-1411, Translated from the, Russ. Dokl. Acad. Nauk SSSR165 (1965) 33-36. Zbl0141.30202MR192184
- [20] Rey O., The question of interior blow-up points for an elliptic Neumann problem: the critical case, J. Math. Pures Appl. (9)81 (7) (2002) 655-696. Zbl1066.35033MR1968337
- [21] Rey O., Boundary effect for an elliptic Neumann problem with critical nonlinearity, Comm. Partial Differential Equations22 (7–8) (1997). Zbl0891.35040
- [22] Schoen R., On the number of constant scalar curvature metrics in a conformal class, in: Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 311-320. Zbl0733.53021MR1173050
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.