Interior estimates for some semilinear elliptic problem with critical nonlinearity

Pierpaolo Esposito

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 4, page 629-644
  • ISSN: 0294-1449

How to cite

top

Esposito, Pierpaolo. "Interior estimates for some semilinear elliptic problem with critical nonlinearity." Annales de l'I.H.P. Analyse non linéaire 24.4 (2007): 629-644. <http://eudml.org/doc/78753>.

@article{Esposito2007,
author = {Esposito, Pierpaolo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {compactness; critical exponent; singular perturbations; blow-up analysis},
language = {eng},
number = {4},
pages = {629-644},
publisher = {Elsevier},
title = {Interior estimates for some semilinear elliptic problem with critical nonlinearity},
url = {http://eudml.org/doc/78753},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Esposito, Pierpaolo
TI - Interior estimates for some semilinear elliptic problem with critical nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 4
SP - 629
EP - 644
LA - eng
KW - compactness; critical exponent; singular perturbations; blow-up analysis
UR - http://eudml.org/doc/78753
ER -

References

top
  1. [1] Adimurthi, Mancini G., Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math.456 (1994) 1-18. Zbl0804.35036MR1301449
  2. [2] Adimurthi, Mancini G., The Neumann problem for elliptic equations with critical nonlinearity, in: Nonlinear Analysis, Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, 1991, pp. 9-25. Zbl0836.35048MR1205370
  3. [3] Adimurthi, Mancini G., Yadava S.L., The role of the mean curvature in semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations20 (3–4) (1995) 591-631. Zbl0847.35047
  4. [4] Bahri A., Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, vol. 182, Longman Scientific & Technical, Harlow, 1989, copublished in the United States with John Wiley & Sons, Inc., New York. Zbl0676.58021MR1019828
  5. [5] Caffarelli L.A., Gidas B., Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (3) (1989) 271-297. Zbl0702.35085MR982351
  6. [6] Cao D., Noussair E.S., Yan S., Existence and nonexistence of interior-peaked solution for a nonlinear Neumann problem, Pacific J. Math.200 (1) (2001) 19-41. Zbl1140.35440MR1863405
  7. [7] Castorina D., Mancini G., Non existence of bounded-energy solutions for some semilinear elliptic equations with a large parameter, Rend. Sem. Mat. Univ. Padova110 (2003) 147-160. Zbl1121.35053MR2033005
  8. [8] Druet O., From one bubble to several bubbles: the low-dimensional case, J. Differential Geom.63 (3) (2003) 399-473. Zbl1070.53017MR2015469
  9. [9] Druet O., Compactness for Yamabe metrics in low dimensions, Int. Math. Res. Not.23 (2004) 1143-1191. Zbl1085.53029MR2041549
  10. [10] Druet O., Hebey E., Robert F., Blow-Up Theory for Elliptic PDEs in Riemannian Geometry, Mathematical Notes, vol. 45, Princeton University Press, Princeton, NJ, 2004. Zbl1059.58017MR2063399
  11. [11] Druet O., Hebey E., Robert F., A C 0 -theory for the blow-up of second order elliptic equations of critical Sobolev growth, Electron. Res. Announc. Amer. Math. Soc.9 (2003) 19-25, (electronic). Zbl1061.58020MR1988868
  12. [12] Druet O., Hebey E., Vaugon M., Pohozaev type obstructions and solutions of bounded energy for quasilinear elliptic equations with critical Sobolev growth. The conformally flat case, Nonlinear Anal.51 (1) (2002) 79-94. Zbl1066.35032MR1915742
  13. [13] Ghoussoub N., Gui C., Zhu M., On a singularly perturbed Neumann problem with the critical exponent, Comm. Partial Differential Equations26 (11–12) (2001) 1929-1946. Zbl0997.35021
  14. [14] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, 1983. Zbl0562.35001MR737190
  15. [15] Gui C., Lin C.S., Estimates for boundary-bubbling solutions to an elliptic Neumann problem, J. Reine Angew. Math.546 (2002) 201-235. Zbl1136.35380MR1900999
  16. [16] Li Y.Y., Prescribing scalar curvature on S n and related problems. I, J. Differential Equations120 (2) (1995) 319-410. Zbl0827.53039MR1347349
  17. [17] Lin C.S., Ni W.M., Takagi I., Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations72 (1) (1988) 1-27. Zbl0676.35030MR929196
  18. [18] Meinhardt H., Models of Biological Pattern Formation, Academic Press, London, 1982. 
  19. [19] Pohozaev S.I., Eigenfunctions of the equation Δ u + λ f u = 0 , Soviet Math. Dokl.6 (1965) 1408-1411, Translated from the, Russ. Dokl. Acad. Nauk SSSR165 (1965) 33-36. Zbl0141.30202MR192184
  20. [20] Rey O., The question of interior blow-up points for an elliptic Neumann problem: the critical case, J. Math. Pures Appl. (9)81 (7) (2002) 655-696. Zbl1066.35033MR1968337
  21. [21] Rey O., Boundary effect for an elliptic Neumann problem with critical nonlinearity, Comm. Partial Differential Equations22 (7–8) (1997). Zbl0891.35040
  22. [22] Schoen R., On the number of constant scalar curvature metrics in a conformal class, in: Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 311-320. Zbl0733.53021MR1173050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.