Type II collapsing of maximal solutions to the Ricci flow in
P. Daskalopoulos; Manuel del Pino
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 6, page 851-874
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDaskalopoulos, P., and del Pino, Manuel. "Type II collapsing of maximal solutions to the Ricci flow in ${R}^{2}$." Annales de l'I.H.P. Analyse non linéaire 24.6 (2007): 851-874. <http://eudml.org/doc/78766>.
@article{Daskalopoulos2007,
author = {Daskalopoulos, P., del Pino, Manuel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {radially symmetric initial data; soliton cigar solution; logarithmic cusp},
language = {eng},
number = {6},
pages = {851-874},
publisher = {Elsevier},
title = {Type II collapsing of maximal solutions to the Ricci flow in $\{R\}^\{2\}$},
url = {http://eudml.org/doc/78766},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Daskalopoulos, P.
AU - del Pino, Manuel
TI - Type II collapsing of maximal solutions to the Ricci flow in ${R}^{2}$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 6
SP - 851
EP - 874
LA - eng
KW - radially symmetric initial data; soliton cigar solution; logarithmic cusp
UR - http://eudml.org/doc/78766
ER -
References
top- [1] Angenent S., The zero set of a solution of a parabolic equation, J. Reine Angew. Math.390 (1988) 79-96. Zbl0644.35050MR953678
- [2] Angenent S., Velazquez J.J.L., Degenerate neckpinches in mean curvature flow, J. Reine Angew. Math.482 (1997) 15-66. Zbl0866.58055MR1427656
- [3] Bertozzi A.L., The mathematics of moving contact lines in thin liquid films, Notices Amer. Math. Soc.45 (6) (1998) 689-697. Zbl0917.35100MR1627165
- [4] Bertozzi A.L., Pugh M., The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Comm. Pure Appl. Math.49 (2) (1996) 85-123. Zbl0863.76017MR1371925
- [5] Chow B., The Ricci flow on the 2-sphere, J. Differential Geom.33 (2) (1991) 325-334. Zbl0734.53033MR1094458
- [6] de Gennes P.G., Wetting: statics and dynamics, Rev. Modern Phys.57 (3) (1985) 827-863.
- [7] P. Daskalopoulos, N. Sesum, Eternal solutions to the Ricci flow in , preprint. Zbl1127.53057
- [8] Daskalopoulos P., del Pino M.A., On a singular diffusion equation, Comm. Anal. Geom.3 (1995) 523-542. Zbl0851.35072MR1371208
- [9] Daskalopoulos P., Hamilton R., Geometric estimates for the logarithmic fast diffusion equation, Comm. Anal. Geom.12 (1–2) (2004) 143-164. Zbl1070.53041
- [10] Galaktionov V.A., Vazquez J.L., A Stability Technique for Evolution Partial Differential Equations. A Dynamical Systems Approach, Progress in Nonlinear Differential Equations and their Applications, vol. 56, Birkhäuser Boston, Boston, MA, 2004. Zbl1065.35002MR2020328
- [11] Hamilton R., Eternal solutions to the Ricci flow, J. Differential Geom.38 (1993) 1-11. Zbl0792.53041MR1231700
- [12] Hamilton R., The Ricci flow on surfaces, in: Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237-262. Zbl0663.53031MR954419
- [13] Hamilton R., The formation of singularities in the Ricci flow, in: Surveys in Differential Geometry, vol. II, Internat. Press, Cambridge, MA, 1995, pp. 7-136. Zbl0867.53030MR1375255
- [14] Hsu S.-Y., Asymptotic profile of solutions of a singular diffusion equation as , Nonlinear Anal. Ser. A: Theory Methods48 (6) (2002) 781-790. Zbl1019.35055MR1879074
- [15] Hsu S.-Y., Large time behaviour of solutions of the Ricci flow equation on , Pacific J. Math.197 (1) (2001) 25-41. Zbl1053.53045MR1810206
- [16] Hsu S.-Y., Asymptotic behavior of solutions of the equation near the extinction time, Adv. Differential Equations8 (2) (2003) 161-187. Zbl1028.35079MR1948043
- [17] Hsu S.Y., Behaviour of solutions of a singular diffusion equation near the extinction time, Nonlinear Anal.56 (1) (2004) 63-104. Zbl1232.35085MR2031436
- [18] King J.R., Self-similar behavior for the equation of fast nonlinear diffusion, Philos. Trans. R. Soc. London Ser. A343 (1993) 337-375. Zbl0797.35097
- [19] Rodriguez A., Vazquez J.L., Esteban J.R., The maximal solution of the logarithmic fast diffusion equation in two space dimensions, Adv. Differential Equations2 (6) (1997) 867-894. Zbl1023.35515MR1606339
- [20] Wu L.-F., A new result for the porous medium equation derived from the Ricci flow, Bull. Amer. Math. Soc.28 (1993) 90-94. Zbl0780.58009MR1164949
- [21] Wu L.-F., The Ricci flow on complete , Comm. Anal. Geom.1 (1993) 439-472. Zbl0854.58011MR1266475
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.