Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds
Matania Ben-Artzi; Philippe G. Le Floch
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 6, page 989-1008
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBen-Artzi, Matania, and Le Floch, Philippe G.. "Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds." Annales de l'I.H.P. Analyse non linéaire 24.6 (2007): 989-1008. <http://eudml.org/doc/78773>.
@article{Ben2007,
author = {Ben-Artzi, Matania, Le Floch, Philippe G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Riemannian manifold; Lorentzian; measure-valued solution; entropy; shock wave; vanishing diffusion method; finite volume method},
language = {eng},
number = {6},
pages = {989-1008},
publisher = {Elsevier},
title = {Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds},
url = {http://eudml.org/doc/78773},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Ben-Artzi, Matania
AU - Le Floch, Philippe G.
TI - Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 6
SP - 989
EP - 1008
LA - eng
KW - Riemannian manifold; Lorentzian; measure-valued solution; entropy; shock wave; vanishing diffusion method; finite volume method
UR - http://eudml.org/doc/78773
ER -
References
top- [1] Amorim P., Ben-Artzi M., LeFloch P.G., Hyperbolic conservation laws on manifolds. Total variation estimates and the finite volume method, Methods Appl. Anal.12 (2005) 291-324. Zbl1114.35121MR2254012
- [2] Dafermos C.M., Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss., vol. 325, Springer-Verlag, 2000. Zbl0940.35002MR1763936
- [3] DiPerna R.J., Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal.88 (1985) 223-270. Zbl0616.35055MR775191
- [4] Federer H., Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
- [5] Hörmander L., Nonlinear Hyperbolic Differential Equations, Math. Appl., vol. 26, Springer-Verlag, 1997. Zbl0881.35001MR1466700
- [6] Kruzkov S., First-order quasilinear equations with several space variables, English transl. in, Math. USSR-Sb.10 (1970) 217-243. Zbl0215.16203
- [7] Lax P.D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Regional Conf. Series in Appl. Math., vol. 11, SIAM, Philadelphia, 1973. Zbl0268.35062MR350216
- [8] LeFloch P.G., Explicit formula for scalar conservation laws with boundary condition, Math. Methods Appl. Sci.10 (1988) 265-287. Zbl0679.35065MR949657
- [9] LeFloch P.G., Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002. Zbl1019.35001MR1927887
- [10] LeFloch P.G., Nedelec J.-C., Explicit formula for weighted scalar non-linear conservation laws, Trans. Amer. Math. Soc.308 (1988) 667-683. Zbl0674.35058MR951622
- [11] Spivak M., A Comprehensive Introduction to Differential Geometry, vol. 4, Publish or Perish Inc., Houston, 1979.
- [12] Volpert A.I., The space BV and quasi-linear equations, Mat. USSR-Sb.2 (1967) 225-267.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.