Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds

Matania Ben-Artzi; Philippe G. Le Floch

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 6, page 989-1008
  • ISSN: 0294-1449

How to cite

top

Ben-Artzi, Matania, and Le Floch, Philippe G.. "Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds." Annales de l'I.H.P. Analyse non linéaire 24.6 (2007): 989-1008. <http://eudml.org/doc/78773>.

@article{Ben2007,
author = {Ben-Artzi, Matania, Le Floch, Philippe G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Riemannian manifold; Lorentzian; measure-valued solution; entropy; shock wave; vanishing diffusion method; finite volume method},
language = {eng},
number = {6},
pages = {989-1008},
publisher = {Elsevier},
title = {Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds},
url = {http://eudml.org/doc/78773},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Ben-Artzi, Matania
AU - Le Floch, Philippe G.
TI - Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 6
SP - 989
EP - 1008
LA - eng
KW - Riemannian manifold; Lorentzian; measure-valued solution; entropy; shock wave; vanishing diffusion method; finite volume method
UR - http://eudml.org/doc/78773
ER -

References

top
  1. [1] Amorim P., Ben-Artzi M., LeFloch P.G., Hyperbolic conservation laws on manifolds. Total variation estimates and the finite volume method, Methods Appl. Anal.12 (2005) 291-324. Zbl1114.35121MR2254012
  2. [2] Dafermos C.M., Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss., vol. 325, Springer-Verlag, 2000. Zbl0940.35002MR1763936
  3. [3] DiPerna R.J., Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal.88 (1985) 223-270. Zbl0616.35055MR775191
  4. [4] Federer H., Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
  5. [5] Hörmander L., Nonlinear Hyperbolic Differential Equations, Math. Appl., vol. 26, Springer-Verlag, 1997. Zbl0881.35001MR1466700
  6. [6] Kruzkov S., First-order quasilinear equations with several space variables, English transl. in, Math. USSR-Sb.10 (1970) 217-243. Zbl0215.16203
  7. [7] Lax P.D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Regional Conf. Series in Appl. Math., vol. 11, SIAM, Philadelphia, 1973. Zbl0268.35062MR350216
  8. [8] LeFloch P.G., Explicit formula for scalar conservation laws with boundary condition, Math. Methods Appl. Sci.10 (1988) 265-287. Zbl0679.35065MR949657
  9. [9] LeFloch P.G., Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002. Zbl1019.35001MR1927887
  10. [10] LeFloch P.G., Nedelec J.-C., Explicit formula for weighted scalar non-linear conservation laws, Trans. Amer. Math. Soc.308 (1988) 667-683. Zbl0674.35058MR951622
  11. [11] Spivak M., A Comprehensive Introduction to Differential Geometry, vol. 4, Publish or Perish Inc., Houston, 1979. 
  12. [12] Volpert A.I., The space BV and quasi-linear equations, Mat. USSR-Sb.2 (1967) 225-267. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.