Monotonicity properties for ground states of the scalar field equation

Patricio L. Felmer; Alexander Quaas; Moxun Tang; Jianshe Yu

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 1, page 105-119
  • ISSN: 0294-1449

How to cite

top

Felmer, Patricio L., et al. "Monotonicity properties for ground states of the scalar field equation." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 105-119. <http://eudml.org/doc/78774>.

@article{Felmer2008,
author = {Felmer, Patricio L., Quaas, Alexander, Tang, Moxun, Yu, Jianshe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {ground states; Liouville type theorem; uniqueness and existence; monotonic property; maximum value; scalar field equation},
language = {eng},
number = {1},
pages = {105-119},
publisher = {Elsevier},
title = {Monotonicity properties for ground states of the scalar field equation},
url = {http://eudml.org/doc/78774},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Felmer, Patricio L.
AU - Quaas, Alexander
AU - Tang, Moxun
AU - Yu, Jianshe
TI - Monotonicity properties for ground states of the scalar field equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 105
EP - 119
LA - eng
KW - ground states; Liouville type theorem; uniqueness and existence; monotonic property; maximum value; scalar field equation
UR - http://eudml.org/doc/78774
ER -

References

top
  1. [1] Berestycki H., Lions P.L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
  2. [2] Chen C.C., Lin C.S., Uniqueness of the ground state solutions of Δ u + f u = 0 in R n , n 3 , Comm. Partial Differential Equations16 (1991) 1549-1572. Zbl0753.35034MR1132797
  3. [3] Coffman C., On the positive solutions of boundary problems for a class of nonlinear differential equations, J. Differential Equations3 (1967) 92-111. Zbl0152.08603MR204755
  4. [4] Cortázar C., Elgueta M., Felmer P., Uniqueness of positive solutions of Δ u + f u = 0 in R N , N 3 , Arch. Rational Mech. Anal.142 (1998) 127-141. Zbl0912.35059MR1629650
  5. [5] Felmer P.L., Quaas A., On critical exponents for the Pucci's extremal operators, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003) 843-865. Zbl1274.35115MR1995504
  6. [6] Felmer P., Quaas A., Tang M., On uniqueness for a nonlinear elliptic equation involving the Pucci's extremal operator, J. Differential Equations226 (2006) 80-98. Zbl1245.35038MR2232430
  7. [7] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in R n , in: Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., vol. 7a, Academic Press, New York, 1981, pp. 369-402. Zbl0469.35052MR634248
  8. [8] Kwong M.K., Uniqueness of positive solutions of Δ u - u + u p = 0 in R n , Arch. Rational Mech. Anal.105 (1989) 243-266. Zbl0676.35032MR969899
  9. [9] Kwong M.K., Zhang L., Uniqueness of the positive solution of Δ u + f u = 0 in an annulus, Differential Integral Equations4 (1991) 583-596. Zbl0724.34023MR1097920
  10. [10] McLeod K., Serrin J., Uniqueness of positive radial solutions of Δ u + f u = 0 in R n , Arch. Rational Mech. Anal.99 (1987) 115-145. Zbl0667.35023MR886933
  11. [11] McLeod K., Uniqueness of positive radial solutions of Δ u + f u = 0 in R n , II, Trans. Amer. Math. Soc.339 (1993) 495-505. Zbl0804.35034MR1201323
  12. [12] Ni W.M., Uniqueness of solutions of nonlinear Dirichlet problems, J. Differential Equations50 (1983) 289-304. Zbl0476.35033MR719451
  13. [13] Ni W.M., Nussbaum R., Uniqueness of nonuniqueness for positive radial solutions of Δ u + f ( u , r ) = 0 , Comm. Pure Appl. Math.38 (1985) 67-108. Zbl0581.35021MR768105
  14. [14] Peletier L.A., Serrin J., Uniqueness of positive solutions of semilinear equations in R N , Arch. Rational Mech. Anal.81 (1983) 181-197. Zbl0516.35031MR682268
  15. [15] Peletier L.A., Serrin J., Uniqueness of non-negative of semilinear equations in R N , solutions of semilinear equations in R N , J. Differential Equations61 (1986) 380-397. Zbl0577.35035MR829369
  16. [16] Pohozaev S.I., On the eigenfunctions of the equation Δ u + λ f u = 0 , Dokl. Akad. Nauk SSSR165 (1965) 36-39, (in Russian). Zbl0141.30202MR192184
  17. [17] Serrin J., Tang M., Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J.49 (2000) 897-923. Zbl0979.35049MR1803216
  18. [18] Tang M., Uniqueness and global structure of positive radial solutions for quasilinear elliptic equations, Comm. Partial Differential Equations26 (2001) 909-938. Zbl1010.35044MR1843289
  19. [19] Tang M., Uniqueness of positive radial solutions for Δ u - u + u p = 0 on an annulus, J. Differential Equations189 (2003) 148-160. Zbl1158.35366MR1968317
  20. [20] Tang M., Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 705-717. Zbl1086.35053MR1983694

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.