Monotonicity properties for ground states of the scalar field equation
Patricio L. Felmer; Alexander Quaas; Moxun Tang; Jianshe Yu
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 1, page 105-119
- ISSN: 0294-1449
Access Full Article
topHow to cite
topFelmer, Patricio L., et al. "Monotonicity properties for ground states of the scalar field equation." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 105-119. <http://eudml.org/doc/78774>.
@article{Felmer2008,
author = {Felmer, Patricio L., Quaas, Alexander, Tang, Moxun, Yu, Jianshe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {ground states; Liouville type theorem; uniqueness and existence; monotonic property; maximum value; scalar field equation},
language = {eng},
number = {1},
pages = {105-119},
publisher = {Elsevier},
title = {Monotonicity properties for ground states of the scalar field equation},
url = {http://eudml.org/doc/78774},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Felmer, Patricio L.
AU - Quaas, Alexander
AU - Tang, Moxun
AU - Yu, Jianshe
TI - Monotonicity properties for ground states of the scalar field equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 105
EP - 119
LA - eng
KW - ground states; Liouville type theorem; uniqueness and existence; monotonic property; maximum value; scalar field equation
UR - http://eudml.org/doc/78774
ER -
References
top- [1] Berestycki H., Lions P.L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
- [2] Chen C.C., Lin C.S., Uniqueness of the ground state solutions of in , , Comm. Partial Differential Equations16 (1991) 1549-1572. Zbl0753.35034MR1132797
- [3] Coffman C., On the positive solutions of boundary problems for a class of nonlinear differential equations, J. Differential Equations3 (1967) 92-111. Zbl0152.08603MR204755
- [4] Cortázar C., Elgueta M., Felmer P., Uniqueness of positive solutions of in , , Arch. Rational Mech. Anal.142 (1998) 127-141. Zbl0912.35059MR1629650
- [5] Felmer P.L., Quaas A., On critical exponents for the Pucci's extremal operators, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (2003) 843-865. Zbl1274.35115MR1995504
- [6] Felmer P., Quaas A., Tang M., On uniqueness for a nonlinear elliptic equation involving the Pucci's extremal operator, J. Differential Equations226 (2006) 80-98. Zbl1245.35038MR2232430
- [7] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in , in: Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., vol. 7a, Academic Press, New York, 1981, pp. 369-402. Zbl0469.35052MR634248
- [8] Kwong M.K., Uniqueness of positive solutions of in , Arch. Rational Mech. Anal.105 (1989) 243-266. Zbl0676.35032MR969899
- [9] Kwong M.K., Zhang L., Uniqueness of the positive solution of in an annulus, Differential Integral Equations4 (1991) 583-596. Zbl0724.34023MR1097920
- [10] McLeod K., Serrin J., Uniqueness of positive radial solutions of in , Arch. Rational Mech. Anal.99 (1987) 115-145. Zbl0667.35023MR886933
- [11] McLeod K., Uniqueness of positive radial solutions of in , II, Trans. Amer. Math. Soc.339 (1993) 495-505. Zbl0804.35034MR1201323
- [12] Ni W.M., Uniqueness of solutions of nonlinear Dirichlet problems, J. Differential Equations50 (1983) 289-304. Zbl0476.35033MR719451
- [13] Ni W.M., Nussbaum R., Uniqueness of nonuniqueness for positive radial solutions of , Comm. Pure Appl. Math.38 (1985) 67-108. Zbl0581.35021MR768105
- [14] Peletier L.A., Serrin J., Uniqueness of positive solutions of semilinear equations in , Arch. Rational Mech. Anal.81 (1983) 181-197. Zbl0516.35031MR682268
- [15] Peletier L.A., Serrin J., Uniqueness of non-negative of semilinear equations in , solutions of semilinear equations in , J. Differential Equations61 (1986) 380-397. Zbl0577.35035MR829369
- [16] Pohozaev S.I., On the eigenfunctions of the equation , Dokl. Akad. Nauk SSSR165 (1965) 36-39, (in Russian). Zbl0141.30202MR192184
- [17] Serrin J., Tang M., Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J.49 (2000) 897-923. Zbl0979.35049MR1803216
- [18] Tang M., Uniqueness and global structure of positive radial solutions for quasilinear elliptic equations, Comm. Partial Differential Equations26 (2001) 909-938. Zbl1010.35044MR1843289
- [19] Tang M., Uniqueness of positive radial solutions for on an annulus, J. Differential Equations189 (2003) 148-160. Zbl1158.35366MR1968317
- [20] Tang M., Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 705-717. Zbl1086.35053MR1983694
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.