Solutions of an elliptic system with a nearly critical exponent

I. A. Guerra

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 1, page 181-200
  • ISSN: 0294-1449

How to cite

top

Guerra, I. A.. "Solutions of an elliptic system with a nearly critical exponent." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 181-200. <http://eudml.org/doc/78780>.

@article{Guerra2008,
author = {Guerra, I. A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {semilinear elliptic system; asymptotic behavior; critical exponent},
language = {eng},
number = {1},
pages = {181-200},
publisher = {Elsevier},
title = {Solutions of an elliptic system with a nearly critical exponent},
url = {http://eudml.org/doc/78780},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Guerra, I. A.
TI - Solutions of an elliptic system with a nearly critical exponent
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 181
EP - 200
LA - eng
KW - semilinear elliptic system; asymptotic behavior; critical exponent
UR - http://eudml.org/doc/78780
ER -

References

top
  1. [1] Atkinson F.V., Peletier L.A., Elliptic equations with nearly critical growth, J. Differential Equations70 (1987) 349-365. Zbl0657.35058MR915493
  2. [2] M. Ben Ayed, K. El Mehdi, On a biharmonic equation involving nearly critical exponent, preprint. Zbl1162.35375MR2314331
  3. [3] Brézis H., Peletier L.A., Asymptotics for elliptic equations involving critical growth, in: Partial Differential Equations and the Calculus of Variations, vol. I, Birkhäuser, Boston, MA, 1989, pp. 149-192. Zbl0685.35013MR1034005
  4. [4] Clément Ph., de Figueiredo D.G., Mitidieri E., Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations17 (1992) 923-940. Zbl0818.35027MR1177298
  5. [5] Chen X., Li C., Ou B., Classification of solutions for a system of integral equations, Comm. Partial Differential Equations30 (2005) 59-65. Zbl1073.45005MR2131045
  6. [6] Chou K.-S., Geng D., Asymptotics of positive solutions for a biharmonic equation involving critical exponent, Differential Integral Equations13 (7–9) (2000) 921-940. Zbl0977.35043MR1775240
  7. [7] De Figueiredo D.G., Felmer P., On superquadratic elliptic systems, Trans. Amer. Math. Soc.343 (1994) 99-116. Zbl0799.35063MR1214781
  8. [8] De Figueiredo D.G., Lions P.L., Nussbaum R.D., A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl.61 (1982) 41-63. Zbl0452.35030MR664341
  9. [9] De Figueiredo D.G., Ruf B., Elliptic systems with nonlinearities of arbitrary growth, Mediterranean. J. Math.1 (4) (2004) 417-431. Zbl1135.35026MR2112747
  10. [10] Flucher M., Wei J., Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots, Manuscripta Mat.94 (1997) 337-346. Zbl0892.35061MR1485441
  11. [11] Gidas B., Ni W., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979) 209-243. Zbl0425.35020MR544879
  12. [12] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  13. [13] Guerra I.A., Asymptotic behaviors of a semilinear elliptic system with a large exponent, J. Dynam. Differential Equations19 (1) (2007) 243-263. Zbl1186.35015MR2279954
  14. [14] Hammami M., Concentration phenomena for fourth-order elliptic equations with critical exponent, Electron. J. Differential Equations121 (2004) 22. Zbl1129.35416MR2108892
  15. [15] Han Z.-C., Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré8 (2) (1991) 159-174. Zbl0729.35014MR1096602
  16. [16] Hulshof J., van der Vorst R.C.A.M., Differential systems with strongly indefinite variational structure, J. Funct. Anal.114 (1993) 32-58. Zbl0793.35038MR1220982
  17. [17] Hulshof J., van der Vorst R.C.A.M., Asymptotic behaviour of ground states, Proc. Amer. Math. Soc.124 (8) (1996) 2423-2431. Zbl0860.35029MR1363170
  18. [18] Lieb E.H., Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. of Math.118 (1983) 349-374. Zbl0527.42011MR717827
  19. [19] Mitidieri E., A Rellich type identity and applications, Comm. Partial Differential Equations18 (1–2) (1993) 125-151. Zbl0816.35027MR1211727
  20. [20] Peletier L.A., van der Vorst R.C.A.M., Existence and nonexistence of positive solutions of non-linear elliptic systems and the biharmonic equation, Differential Integral Equations5 (4) (1992) 747-767. Zbl0758.35029MR1167492
  21. [21] Rey O., Proof of two conjectures of H. Brézis and L.A. Peletier, Manuscripta Mat.65 (1) (1989) 19-37. Zbl0708.35032MR1006624
  22. [22] Struwe M., Global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z.187 (1984) 511-517. Zbl0535.35025MR760051
  23. [23] van der Vorst R.C.A.M., Variational identities and applications to differential systems, Arch. Ration. Mech. Anal.116 (1991) 375-398. Zbl0796.35059MR1132768
  24. [24] Wang X.J., Sharp constant in a Sobolev inequality, Nonlinear Anal. TMA20 (1993) 261-268. Zbl0803.35045MR1202203

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.