Qualitative properties of a continuum theory for thin films
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 1, page 43-75
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSchmidt, Bernd. "Qualitative properties of a continuum theory for thin films." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 43-75. <http://eudml.org/doc/78783>.
@article{Schmidt2008,
author = {Schmidt, Bernd},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {discrete-to-continuum limits},
language = {eng},
number = {1},
pages = {43-75},
publisher = {Elsevier},
title = {Qualitative properties of a continuum theory for thin films},
url = {http://eudml.org/doc/78783},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Schmidt, Bernd
TI - Qualitative properties of a continuum theory for thin films
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 43
EP - 75
LA - eng
KW - discrete-to-continuum limits
UR - http://eudml.org/doc/78783
ER -
References
top- [1] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
- [2] Blanc X., LeBris C., Lions P.-L., Convergence de modèles moléculaires vers des modèles de mécanique des milieux continus, C. R. Acad. Sci. Paris, Ser. I332 (2001) 949-956. Zbl0986.74006MR1838776
- [3] Blanc X., LeBris C., Lions P.-L., From molecular models to continuum mechanics, Arch. Rational Mech. Anal.164 (2002) 341-381. Zbl1028.74005MR1933632
- [4] Braides A., Nonlocal variational limits of discrete systems, Commun. Contemp. Math.2 (2000) 285-297. Zbl0957.49011MR1759792
- [5] Braides A., Gelli M.S., Limits of discrete systems with long-range interactions, J. Convex Anal.9 (2002) 363-399. Zbl1031.49022MR1970562
- [6] Braides A., Gelli M.S., Continuum limits of discrete systems without convexity hypotheses, Math. Mech. Solids7 (2002) 41-66. Zbl1024.74004MR1900933
- [7] Ciarlet P.G., Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988. Zbl0648.73014MR936420
- [8] Ciarlet P.G., Mathematical Elasticity. Vol. II: Theory of Plates, North-Holland, Amsterdam, 1997. Zbl0953.74004MR1477663
- [9] Dacorogna B., Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989. Zbl0703.49001MR990890
- [10] Dal Maso G., An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993. Zbl0816.49001MR1201152
- [11] Dolzmann G., Variational Methods for Crystalline Microstructure – Analysis and Computation, Springer-Verlag, Berlin, 2003. Zbl1016.74002MR1954274
- [12] Friesecke G., James R.D., A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods, J. Mech. Phys. Solids48 (2000) 1519-1540. Zbl0984.74009MR1766412
- [13] Friesecke G., James R.D., Müller S., Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Ser. I334 (2002) 173-178. Zbl1012.74043MR1885102
- [14] Friesecke G., James R.D., Müller S., A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math.55 (2002) 1461-1506. Zbl1021.74024MR1916989
- [15] Friesecke G., James R.D., Müller S., A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Rational Mech. Anal.180 (2006) 183-236. Zbl1100.74039MR2210909
- [16] Friesecke G., James R.D., Mora M.G., Müller S., Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence, C. R. Acad. Sci. Paris, Ser. I336 (2003) 697-702. Zbl1140.74481MR1988135
- [17] Le Dret H., Raoult A., La modèle membrane non linéaire comme limite variationnelle de l'élasticité non linéaire tridimensionnelle, C. R. Acad. Sci. Paris, Ser. I317 (1993) 221-226. Zbl0781.73037MR1231426
- [18] Le Dret H., Raoult A., The nonlinear membrane model as a variational limit of three-dimensional elasticity, J. Math. Pures Appl.74 (1995) 549-578. Zbl0847.73025MR1365259
- [19] Le Dret H., Raoult A., The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci.6 (1996) 59-84. Zbl0844.73045MR1375820
- [20] Love A.E.H., A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 1927. JFM53.0752.01
- [21] B. Schmidt, On the passage from atomic to continuum theory for thin films, preprint 82/2005, Max-Planck Institut für Mathematik in den Naturwissenschaften, Leipzig. Zbl1156.74028MR2434899
- [22] B. Schmidt, Effective theories for thin elastic films, PhD thesis, Universität Leipzig, 2006. Zbl1126.74002
- [23] Weiner J.H., Statistical Mechanics of Elasticity, J. Wiley & Sons, New York, 1983. Zbl0616.73034
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.