Qualitative properties of a continuum theory for thin films

Bernd Schmidt

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 1, page 43-75
  • ISSN: 0294-1449

How to cite

top

Schmidt, Bernd. "Qualitative properties of a continuum theory for thin films." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 43-75. <http://eudml.org/doc/78783>.

@article{Schmidt2008,
author = {Schmidt, Bernd},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {discrete-to-continuum limits},
language = {eng},
number = {1},
pages = {43-75},
publisher = {Elsevier},
title = {Qualitative properties of a continuum theory for thin films},
url = {http://eudml.org/doc/78783},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Schmidt, Bernd
TI - Qualitative properties of a continuum theory for thin films
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 43
EP - 75
LA - eng
KW - discrete-to-continuum limits
UR - http://eudml.org/doc/78783
ER -

References

top
  1. [1] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
  2. [2] Blanc X., LeBris C., Lions P.-L., Convergence de modèles moléculaires vers des modèles de mécanique des milieux continus, C. R. Acad. Sci. Paris, Ser. I332 (2001) 949-956. Zbl0986.74006MR1838776
  3. [3] Blanc X., LeBris C., Lions P.-L., From molecular models to continuum mechanics, Arch. Rational Mech. Anal.164 (2002) 341-381. Zbl1028.74005MR1933632
  4. [4] Braides A., Nonlocal variational limits of discrete systems, Commun. Contemp. Math.2 (2000) 285-297. Zbl0957.49011MR1759792
  5. [5] Braides A., Gelli M.S., Limits of discrete systems with long-range interactions, J. Convex Anal.9 (2002) 363-399. Zbl1031.49022MR1970562
  6. [6] Braides A., Gelli M.S., Continuum limits of discrete systems without convexity hypotheses, Math. Mech. Solids7 (2002) 41-66. Zbl1024.74004MR1900933
  7. [7] Ciarlet P.G., Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988. Zbl0648.73014MR936420
  8. [8] Ciarlet P.G., Mathematical Elasticity. Vol. II: Theory of Plates, North-Holland, Amsterdam, 1997. Zbl0953.74004MR1477663
  9. [9] Dacorogna B., Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989. Zbl0703.49001MR990890
  10. [10] Dal Maso G., An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993. Zbl0816.49001MR1201152
  11. [11] Dolzmann G., Variational Methods for Crystalline Microstructure – Analysis and Computation, Springer-Verlag, Berlin, 2003. Zbl1016.74002MR1954274
  12. [12] Friesecke G., James R.D., A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods, J. Mech. Phys. Solids48 (2000) 1519-1540. Zbl0984.74009MR1766412
  13. [13] Friesecke G., James R.D., Müller S., Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Ser. I334 (2002) 173-178. Zbl1012.74043MR1885102
  14. [14] Friesecke G., James R.D., Müller S., A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math.55 (2002) 1461-1506. Zbl1021.74024MR1916989
  15. [15] Friesecke G., James R.D., Müller S., A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Rational Mech. Anal.180 (2006) 183-236. Zbl1100.74039MR2210909
  16. [16] Friesecke G., James R.D., Mora M.G., Müller S., Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence, C. R. Acad. Sci. Paris, Ser. I336 (2003) 697-702. Zbl1140.74481MR1988135
  17. [17] Le Dret H., Raoult A., La modèle membrane non linéaire comme limite variationnelle de l'élasticité non linéaire tridimensionnelle, C. R. Acad. Sci. Paris, Ser. I317 (1993) 221-226. Zbl0781.73037MR1231426
  18. [18] Le Dret H., Raoult A., The nonlinear membrane model as a variational limit of three-dimensional elasticity, J. Math. Pures Appl.74 (1995) 549-578. Zbl0847.73025MR1365259
  19. [19] Le Dret H., Raoult A., The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci.6 (1996) 59-84. Zbl0844.73045MR1375820
  20. [20] Love A.E.H., A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 1927. JFM53.0752.01
  21. [21] B. Schmidt, On the passage from atomic to continuum theory for thin films, preprint 82/2005, Max-Planck Institut für Mathematik in den Naturwissenschaften, Leipzig. Zbl1156.74028MR2434899
  22. [22] B. Schmidt, Effective theories for thin elastic films, PhD thesis, Universität Leipzig, 2006. Zbl1126.74002
  23. [23] Weiner J.H., Statistical Mechanics of Elasticity, J. Wiley & Sons, New York, 1983. Zbl0616.73034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.