Asymptotic solutions for large time of Hamilton–Jacobi equations in euclidean n space

Hitoshi Ishii

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 2, page 231-266
  • ISSN: 0294-1449

How to cite

top

Ishii, Hitoshi. "Asymptotic solutions for large time of Hamilton–Jacobi equations in euclidean n space." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 231-266. <http://eudml.org/doc/78787>.

@article{Ishii2008,
author = {Ishii, Hitoshi},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {weak KAM theory; convexity assumptions; unique viscosity solution},
language = {eng},
number = {2},
pages = {231-266},
publisher = {Elsevier},
title = {Asymptotic solutions for large time of Hamilton–Jacobi equations in euclidean n space},
url = {http://eudml.org/doc/78787},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Ishii, Hitoshi
TI - Asymptotic solutions for large time of Hamilton–Jacobi equations in euclidean n space
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 231
EP - 266
LA - eng
KW - weak KAM theory; convexity assumptions; unique viscosity solution
UR - http://eudml.org/doc/78787
ER -

References

top
  1. [1] Alvarez O., Bounded-from-below viscosity solutions of Hamilton–Jacobi equations, Differential Integral Equations10 (3) (1997) 419-436. Zbl0890.35026MR1744854
  2. [2] Aubin J.-P., Cellina A., Differential Inclusions. Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften, vol. 264, Springer-Verlag, Berlin, 1984. Zbl0538.34007MR755330
  3. [3] Barles G., Solutions de viscosité des équations de Hamilton–Jacobi, Mathématiques & Applications (Berlin), vol. 17, Springer-Verlag, Paris, 1994. Zbl0819.35002MR1613876
  4. [4] Bardi M., Capuzzo-Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Boston, MA, 1997, With appendices by Maurizio Falcone and Pierpaolo Soravia. Zbl0890.49011
  5. [5] Barles G., Roquejoffre J.-M., Ergodic type problems and large time behaviour of unbounded solutions of Hamilton–Jacobi equations, Comm. Partial Differential Equations31 (8) (2006) 1209-1225. Zbl1107.35019MR2254612
  6. [6] Barles G., Souganidis P.E., On the large time behavior of solutions of Hamilton–Jacobi equations, SIAM J. Math. Anal.31 (4) (2000) 925-939. Zbl0960.70015MR1752423
  7. [7] Barles G., Souganidis P.E., Space–time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal.32 (6) (2001) 1311-1323. Zbl0986.35047MR1856250
  8. [8] Barron E.N., Jensen R., Semicontinuous viscosity solutions for Hamilton–Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations15 (12) (1990) 1713-1742. Zbl0732.35014MR1080619
  9. [9] Barron E.N., Jensen R., Optimal control and semicontinuous viscosity solutions, Proc. Amer. Math. Soc.113 (2) (1991) 397-402. Zbl0741.49010MR1076572
  10. [10] Clarke F.H., Optimization and Nonsmooth Analysis, SIAM, Philadelphia, 1983. Zbl0696.49002MR709590
  11. [11] Crandall M.G., Ishii H., Lions P.-L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc.27 (1992) 1-67. Zbl0755.35015MR1118699
  12. [12] Davini A., Siconolfi A., A generalized dynamical approach to the large time behavior of solutions of Hamilton–Jacobi equations, SIAM J. Math. Anal.38 (2) (2006) 478-502. Zbl1109.49034MR2237158
  13. [13] Fathi A., Théorème KAM faible et théorie de Mather pour les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I Math.324 (9) (1997) 1043-1046. Zbl0885.58022MR1451248
  14. [14] Fathi A., Sur la convergence du semi-groupe de Lax–Oleinik, C. R. Acad. Sci. Paris Sér. I Math.327 (3) (1998) 267-270. Zbl1052.37514MR1650261
  15. [15] A. Fathi, Weak KAM theorem in Lagrangian dynamics, in press. Zbl0885.58022
  16. [16] Fathi A., Siconolfi A., Existence of C 1 critical subsolutions of the Hamilton–Jacobi equation, Invent. Math.155 (2) (2004) 363-388. Zbl1061.58008MR2031431
  17. [17] Fathi A., Siconolfi A., PDE aspects of Aubry–Mather theory for quasiconvex Hamiltonians, Calc. Var. Partial Differential Equations22 (2) (2005) 185-228. Zbl1065.35092MR2106767
  18. [18] Fujita Y., Ishii H., Loreti P., Asymptotic solutions of viscous Hamilton–Jacobi equations with Ornstein–Uhlenbeck operator, Comm. Partial Differential Equations31 (6) (2006) 827-848. Zbl1101.35017MR2233043
  19. [19] Y. Fujita, H. Ishii, P. Loreti, Asymptotic solutions of Hamilton–Jacobi equations in Euclidean n space, Indiana Univ. Math. J., in press. Zbl1112.35041MR2270933
  20. [20] N. Ichihara, H. Ishii, in preparation. 
  21. [21] Ishii H., A generalization of a theorem of Barron and Jensen and a comparison theorem for lower semicontinuous viscosity solutions, Proc. Roy. Soc. Edinburgh Sect. A131 (1) (2001) 137-154. Zbl1158.49302MR1820297
  22. [22] H. Ishii, H. Mitake, Representation formulas for solutions of Hamilton–Jacobi equations, preprint. Zbl1136.35016
  23. [23] Lions P.-L., Generalized Solutions of Hamilton–Jacobi Equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, MA, 1982. Zbl0497.35001MR667669
  24. [24] P.-L. Lions, G. Papanicolaou, S. Varadhan, Homogenization of Hamilton–Jacobi equations, unpublished preprint. 
  25. [25] Namah G., Roquejoffre J.-M., Remarks on the long time behaviour of the solutions of Hamilton–Jacobi equations, Comm. Partial Differential Equations24 (5–6) (1999) 883-893. Zbl0924.35028MR1680905
  26. [26] Rockafellar T., Convex Analysis, Princeton University Press, Princeton, 1970. Zbl0193.18401MR274683
  27. [27] Roquejoffre J.-M., Convergence to steady states or periodic solutions in a class of Hamilton–Jacobi equations, J. Math. Pures Appl.(9) 80 (1) (2001) 85-104. Zbl0979.35033MR1810510

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.