High dimension diffeomorphisms exhibiting infinitely many strange attractors
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 3, page 587-607
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLeal, Bladismir. "High dimension diffeomorphisms exhibiting infinitely many strange attractors." Annales de l'I.H.P. Analyse non linéaire 25.3 (2008): 587-607. <http://eudml.org/doc/78802>.
@article{Leal2008,
author = {Leal, Bladismir},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {diffeomorphisms; homoclinic tangency; strange attractors},
language = {eng},
number = {3},
pages = {587-607},
publisher = {Elsevier},
title = {High dimension diffeomorphisms exhibiting infinitely many strange attractors},
url = {http://eudml.org/doc/78802},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Leal, Bladismir
TI - High dimension diffeomorphisms exhibiting infinitely many strange attractors
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 3
SP - 587
EP - 607
LA - eng
KW - diffeomorphisms; homoclinic tangency; strange attractors
UR - http://eudml.org/doc/78802
ER -
References
top- [1] Benedicks M., Carleson L., The dynamics of the Hénon map, Ann. of Math.133 (1991) 73-169. Zbl0724.58042MR1087346
- [2] Colli E., Infinitely many coexisting strange attractors, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 539-579. Zbl0932.37015MR1643393
- [3] Hénon M., A two dimensional mapping with a strange attractor, Comm. Math. Phys.50 (1976) 69-77. Zbl0576.58018MR422932
- [4] Mora L., Viana M., Abundance of strange attractors, Acta Math.171 (1993) 1-71. Zbl0815.58016MR1237897
- [5] Newhouse S., Diffeomorphisms with infinitely many sinks, Topology13 (1974) 9-18. Zbl0275.58016MR339291
- [6] Newhouse S., The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. I.H.E.S.50 (1979) 101-151. Zbl0445.58022MR556584
- [7] Palis J., A global view of Dynamics and a conjecture on the denseness of finitude of attractors, Astérisque261 (2000) 335-347. Zbl1044.37014MR1755446
- [8] Palis J., A global perspective for non-conservative dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (2005) 485-507. Zbl1143.37016MR2145722
- [9] Palis J., Takens F., Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, 1993. Zbl0790.58014MR1237641
- [10] Palis J., Viana M., High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math.140 (1994) 207-250. Zbl0817.58004MR1289496
- [11] Pumariño A., Rodriguez J.A., Coexistence and persistence of infinitely many strange attractors, Ergodic Theory Dynam. Systems21 (2001) 1511-1523. Zbl1073.37514MR1855845
- [12] Smale S., Differentiable dynamical systems, Bull. Amer. Math. Soc.73 (1967) 747-817. Zbl0202.55202MR228014
- [13] Sternberg E., On the structure of local homeomorphisms of euclidean n-space – II, Amer. J. Math.80 (1958) 623-631. Zbl0083.31406MR96854
- [14] Tresser C., Gambaudo J.M., Diffeomorphisms with infinitely many strange attractors, J. Complexity6 (1990) 409-416. Zbl0717.58041MR1085387
- [15] Viana M., Strange attractors in higher dimensions, Bull. Braz. Math. Soc.24 (1993) 13-62. Zbl0784.58044MR1224299
- [16] Yorke J.A., Alligood K.T., Cascades of period doubling bifurcations a prerequisite for horseshoes, Bull. Amer. Math. Soc.9 (1983) 319-322. Zbl0541.58039MR714994
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.