Strong solutions for a compressible fluid model of Korteweg type
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 4, page 679-696
- ISSN: 0294-1449
Access Full Article
topHow to cite
topKotschote, Matthias. "Strong solutions for a compressible fluid model of Korteweg type." Annales de l'I.H.P. Analyse non linéaire 25.4 (2008): 679-696. <http://eudml.org/doc/78806>.
@article{Kotschote2008,
author = {Kotschote, Matthias},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {maximal regularity; -calculus; contraction mapping principle},
language = {eng},
number = {4},
pages = {679-696},
publisher = {Elsevier},
title = {Strong solutions for a compressible fluid model of Korteweg type},
url = {http://eudml.org/doc/78806},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Kotschote, Matthias
TI - Strong solutions for a compressible fluid model of Korteweg type
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 4
SP - 679
EP - 696
LA - eng
KW - maximal regularity; -calculus; contraction mapping principle
UR - http://eudml.org/doc/78806
ER -
References
top- [1] Amann H., Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr.186 (1997) 5-56. Zbl0880.42007MR1461211
- [2] Anderson D.M., McFadden G.B., Wheeler A.A., Diffuse-interface methods in fluid mech, Ann. Rev. Fluid Mech.30 (1998) 139-165. MR1609626
- [3] Bresch D., Desjardins B., Lin C., On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations28 (3–4) (2003) 843-868. Zbl1106.76436MR1978317
- [4] Cahn J.W., Hilliard J.E., Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys.28 (1998) 258-267.
- [5] Danchin R., Desjardins B., Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (1) (2001) 97-133. Zbl1010.76075MR1810272
- [6] Denk R., Hieber M., Prüss J., -boundedness and problems of elliptic and parabolic type, Mem. Amer. Math. Soc.166 (788) (2003), viii+114 pp. Zbl1274.35002MR2006641
- [7] Dore G., Venni A., On the closedness of the sum of two closed operators, Math. Z.196 (1987) 189-201. Zbl0615.47002MR910825
- [8] Dunn J.E., Serrin J., On the thermomechanics of interstitial working, Arch. Rational Mech. Anal.88 (2) (1985) 95-133. Zbl0582.73004MR775366
- [9] Escher J., Prüss J., Simonett G., A new approach to the regularity of solutions for parabolic equations, in: Evolution Equations, Lecture Notes in Pure and Appl. Math., vol. 234, Dekker, New York, 2003, pp. 167-190. Zbl1070.35009MR2073744
- [10] Gurtin M.E., Polignone D., Vinals J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci.6 (6) (1996) 815-831. Zbl0857.76008MR1404829
- [11] Hattori H., Li D., The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations9 (4) (1996) 323-342. Zbl0881.35095MR1426082
- [12] Hattori H., Li D., Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl.198 (1) (1996) 84-97. Zbl0858.35124MR1373528
- [13] Kalton N., Weis L., The -calculus and sums of closed operators, Math. Ann.321 (2) (2001) 319-345. Zbl0992.47005MR1866491
- [14] M. Kotschote, Strong well-posedness of a model for an ionic exchange process, Thesis, Martin-Luther-Universität Halle-Wittenberg, 2003.
- [15] Ladyzenskaya O.A., Solonikov V.A., Uralceva N.N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, Amer. Math. Soc., Providence, RI, 1968.
- [16] Lancien F., Lancien G., Le Merdy C., A joint functional calculus for sectorial operators with commuting resolvents, Proc. London Math. Soc.77 (1998) 387-414. Zbl0904.47015MR1635157
- [17] Prüss J., Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in -spaces, Math. Bohem.127 (2) (2002) 311-327. Zbl1010.35064MR1981536
- [18] Prüss J., Sohr H., On operators with bounded imaginary powers in Banach spaces, Math. Z.203 (1990) 429-452. Zbl0665.47015MR1038710
- [19] Sobolevskii P.E., Coerciveness inequalities for abstract parabolic equations, Soviet Math. (Doklady)5 (1964) 894-897. Zbl0149.36001MR166487
- [20] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978. Zbl0387.46032MR503903
- [21] Triebel H., Theory of Function Spaces, Geest & Portig K.-G., Leipzig, 1983. Zbl0546.46028MR730762
- [22] Zacher R., Maximal regularity of type for abstract parabolic Volterra equations, J. Evol. Equ.5 (1) (2005) 79-103. Zbl1104.45008MR2125407
- [23] R. Zacher, Quasilinear parabolic integro-differential equations with nonlinear boundary conditions, preprint. Zbl1212.45015MR2278673
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.