Strong solutions for a compressible fluid model of Korteweg type

Matthias Kotschote

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 4, page 679-696
  • ISSN: 0294-1449

How to cite

top

Kotschote, Matthias. "Strong solutions for a compressible fluid model of Korteweg type." Annales de l'I.H.P. Analyse non linéaire 25.4 (2008): 679-696. <http://eudml.org/doc/78806>.

@article{Kotschote2008,
author = {Kotschote, Matthias},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {maximal regularity; -calculus; contraction mapping principle},
language = {eng},
number = {4},
pages = {679-696},
publisher = {Elsevier},
title = {Strong solutions for a compressible fluid model of Korteweg type},
url = {http://eudml.org/doc/78806},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Kotschote, Matthias
TI - Strong solutions for a compressible fluid model of Korteweg type
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 4
SP - 679
EP - 696
LA - eng
KW - maximal regularity; -calculus; contraction mapping principle
UR - http://eudml.org/doc/78806
ER -

References

top
  1. [1] Amann H., Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr.186 (1997) 5-56. Zbl0880.42007MR1461211
  2. [2] Anderson D.M., McFadden G.B., Wheeler A.A., Diffuse-interface methods in fluid mech, Ann. Rev. Fluid Mech.30 (1998) 139-165. MR1609626
  3. [3] Bresch D., Desjardins B., Lin C., On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations28 (3–4) (2003) 843-868. Zbl1106.76436MR1978317
  4. [4] Cahn J.W., Hilliard J.E., Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys.28 (1998) 258-267. 
  5. [5] Danchin R., Desjardins B., Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (1) (2001) 97-133. Zbl1010.76075MR1810272
  6. [6] Denk R., Hieber M., Prüss J., R -boundedness and problems of elliptic and parabolic type, Mem. Amer. Math. Soc.166 (788) (2003), viii+114 pp. Zbl1274.35002MR2006641
  7. [7] Dore G., Venni A., On the closedness of the sum of two closed operators, Math. Z.196 (1987) 189-201. Zbl0615.47002MR910825
  8. [8] Dunn J.E., Serrin J., On the thermomechanics of interstitial working, Arch. Rational Mech. Anal.88 (2) (1985) 95-133. Zbl0582.73004MR775366
  9. [9] Escher J., Prüss J., Simonett G., A new approach to the regularity of solutions for parabolic equations, in: Evolution Equations, Lecture Notes in Pure and Appl. Math., vol. 234, Dekker, New York, 2003, pp. 167-190. Zbl1070.35009MR2073744
  10. [10] Gurtin M.E., Polignone D., Vinals J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci.6 (6) (1996) 815-831. Zbl0857.76008MR1404829
  11. [11] Hattori H., Li D., The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations9 (4) (1996) 323-342. Zbl0881.35095MR1426082
  12. [12] Hattori H., Li D., Global solutions of a high-dimensional system for Korteweg materials, J. Math. Anal. Appl.198 (1) (1996) 84-97. Zbl0858.35124MR1373528
  13. [13] Kalton N., Weis L., The H -calculus and sums of closed operators, Math. Ann.321 (2) (2001) 319-345. Zbl0992.47005MR1866491
  14. [14] M. Kotschote, Strong well-posedness of a model for an ionic exchange process, Thesis, Martin-Luther-Universität Halle-Wittenberg, 2003. 
  15. [15] Ladyzenskaya O.A., Solonikov V.A., Uralceva N.N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, Amer. Math. Soc., Providence, RI, 1968. 
  16. [16] Lancien F., Lancien G., Le Merdy C., A joint functional calculus for sectorial operators with commuting resolvents, Proc. London Math. Soc.77 (1998) 387-414. Zbl0904.47015MR1635157
  17. [17] Prüss J., Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in L p -spaces, Math. Bohem.127 (2) (2002) 311-327. Zbl1010.35064MR1981536
  18. [18] Prüss J., Sohr H., On operators with bounded imaginary powers in Banach spaces, Math. Z.203 (1990) 429-452. Zbl0665.47015MR1038710
  19. [19] Sobolevskii P.E., Coerciveness inequalities for abstract parabolic equations, Soviet Math. (Doklady)5 (1964) 894-897. Zbl0149.36001MR166487
  20. [20] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978. Zbl0387.46032MR503903
  21. [21] Triebel H., Theory of Function Spaces, Geest & Portig K.-G., Leipzig, 1983. Zbl0546.46028MR730762
  22. [22] Zacher R., Maximal regularity of type L p for abstract parabolic Volterra equations, J. Evol. Equ.5 (1) (2005) 79-103. Zbl1104.45008MR2125407
  23. [23] R. Zacher, Quasilinear parabolic integro-differential equations with nonlinear boundary conditions, preprint. Zbl1212.45015MR2278673

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.