Semiconcavity results for optimal control problems admitting no singular minimizing controls
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 4, page 773-802
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCannarsa, P., and Rifford, L.. "Semiconcavity results for optimal control problems admitting no singular minimizing controls." Annales de l'I.H.P. Analyse non linéaire 25.4 (2008): 773-802. <http://eudml.org/doc/78811>.
@article{Cannarsa2008,
author = {Cannarsa, P., Rifford, L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {optimal control; semiconcavity; sub-Riemannian geometry},
language = {eng},
number = {4},
pages = {773-802},
publisher = {Elsevier},
title = {Semiconcavity results for optimal control problems admitting no singular minimizing controls},
url = {http://eudml.org/doc/78811},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Cannarsa, P.
AU - Rifford, L.
TI - Semiconcavity results for optimal control problems admitting no singular minimizing controls
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 4
SP - 773
EP - 802
LA - eng
KW - optimal control; semiconcavity; sub-Riemannian geometry
UR - http://eudml.org/doc/78811
ER -
References
top- [1] Agrachev A., Compactness for sub-Riemannian length-minimizers and subanalyticity, Rend. Sem. Mat. Univ. Politec. Torino56 (4) (2001) 1-12. Zbl1039.53038MR1845741
- [2] Alberti G., Ambrosio L., Cannarsa P., On the singularities of convex functions, Manuscripta Math.76 (3–4) (1992) 421-435. Zbl0784.49011MR1185029
- [3] Bellaiche A., The tangent space in sub-Riemannian geometry, in: Sub-Riemannian Geometry, Birkhäuser, 1996, pp. 1-78. Zbl0862.53031MR1421822
- [4] Cannarsa P., Frankowska H., Some characterizations of optimal trajectories in control theory, SIAM J. Control Optim.29 (6) (1991) 1322-1347. Zbl0744.49011MR1132185
- [5] Cannarsa P., Pignotti C., Sinestrari C., Semiconcavity for optimal control problems with exit time, Discrete Contin. Dynam. Systems6 (4) (2000) 975-997. Zbl1009.49024MR1788264
- [6] Cannarsa P., Sinestrari C., On a class of nonlinear time optimal control problems, Discrete Contin. Dynam. Systems1 (2) (1995) 285-300. Zbl0867.49016MR1355877
- [7] Cannarsa P., Sinestrari C., Convexity properties of the minimum time function, Calc. Var. Partial Differential Equations3 (3) (1995) 273-298. Zbl0836.49013MR1385289
- [8] Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, vol. 58, Birkhäuser Boston Inc., Boston, MA, 2004. Zbl1095.49003MR2041617
- [9] Chow C.-L., Über Systeme von linearen partiellen Differentialgleichungen ester Ordnung, Math. Ann.117 (1939) 98-105. Zbl65.0398.01MR1880JFM65.0398.01
- [10] Clarke F.H., Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983. Zbl0582.49001MR709590
- [11] Clarke F., Necessary conditions in dynamic optimization, Mem. Amer. Math. Soc.173 (816) (2005). Zbl1093.49017MR2117692
- [12] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, vol. 178, Springer-Verlag, New York, 1998. Zbl1047.49500MR1488695
- [13] Ge Z., Horizontal path spaces and Carnot–Carathéodory metrics, Pacific J. Math.161 (2) (1993) 255-286. Zbl0797.49033MR1242199
- [14] I. Kupka, Géométrie sous-riemannienne, Astérisque, (241):Exp. No. 817, 5, 351–380, 1997. Séminaire Bourbaki, vol. 1995/96. Zbl0893.53013MR1472545
- [15] Montgomery R., A Tour of Subriemannian Geometries, their Geodesics and Applications, Mathematical Surveys and Monographs, vol. 91, American Mathematical Society, Providence, RI, 2002. Zbl1044.53022MR1867362
- [16] Rashevsky P.K., About connecting two points of a completely nonholonomic space by admissible curve, Uch. Zapiski Ped. Inst. Libknechta2 (1938) 83-94.
- [17] Rayer C.B., The exponential map for the Lagrange problem on differentiable manifold, Philos. Trans. Roy. Soc. London Ser. A, Math. and Phys.1127 (1967) 299-344. Zbl0154.37004MR247552
- [18] Rifford L., Existence of Lipschitz and semiconcave control-Lyapunov functions, SIAM J. Control Optim.39 (4) (2000) 1043-1064. Zbl0982.93068MR1814266
- [19] Rifford L., Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim.41 (3) (2002) 659-681. Zbl1034.93053MR1939865
- [20] Rifford L., The stabilization problem: AGAS and SRS feedbacks, in: Optimal Control, Stabilization, and Nonsmooth Analysis, Lectures Notes in Control and Information Sciences, vol. 301, Springer-Verlag, Heidelberg, 2004, pp. 173-184. Zbl1259.93097MR2079683
- [21] Rifford L., A Morse–Sard theorem for the distance function on Riemannian manifolds, Manuscripta Math.113 (2004) 251-265. Zbl1051.53050MR2128549
- [22] Rifford L., À propos des sphères sous-riemanniennes, Bull. Belg. Math. Soc. Simon Stevin13 (3) (2006) 521-526. Zbl1135.53021MR2307687
- [23] L. Rifford, E. Trélat, On the stabilization problem for nonholonomic distributions, J. Eur. Math. Soc., in press. Zbl1194.49070
- [24] Trélat E., Some properties of the value function and its level sets for affine control systems with quadratic cost, J. Dynamical Control Systems6 (4) (2000) 511-541. Zbl0964.49021MR1778212
- [25] Weinstein A., Fat bundles and symplectic manifolds, Adv. in Math.37 (1980) 239-250. Zbl0449.53035MR591728
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.