Semiconcavity results for optimal control problems admitting no singular minimizing controls

P. Cannarsa; L. Rifford

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 4, page 773-802
  • ISSN: 0294-1449

How to cite

top

Cannarsa, P., and Rifford, L.. "Semiconcavity results for optimal control problems admitting no singular minimizing controls." Annales de l'I.H.P. Analyse non linéaire 25.4 (2008): 773-802. <http://eudml.org/doc/78811>.

@article{Cannarsa2008,
author = {Cannarsa, P., Rifford, L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {optimal control; semiconcavity; sub-Riemannian geometry},
language = {eng},
number = {4},
pages = {773-802},
publisher = {Elsevier},
title = {Semiconcavity results for optimal control problems admitting no singular minimizing controls},
url = {http://eudml.org/doc/78811},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Cannarsa, P.
AU - Rifford, L.
TI - Semiconcavity results for optimal control problems admitting no singular minimizing controls
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 4
SP - 773
EP - 802
LA - eng
KW - optimal control; semiconcavity; sub-Riemannian geometry
UR - http://eudml.org/doc/78811
ER -

References

top
  1. [1] Agrachev A., Compactness for sub-Riemannian length-minimizers and subanalyticity, Rend. Sem. Mat. Univ. Politec. Torino56 (4) (2001) 1-12. Zbl1039.53038MR1845741
  2. [2] Alberti G., Ambrosio L., Cannarsa P., On the singularities of convex functions, Manuscripta Math.76 (3–4) (1992) 421-435. Zbl0784.49011MR1185029
  3. [3] Bellaiche A., The tangent space in sub-Riemannian geometry, in: Sub-Riemannian Geometry, Birkhäuser, 1996, pp. 1-78. Zbl0862.53031MR1421822
  4. [4] Cannarsa P., Frankowska H., Some characterizations of optimal trajectories in control theory, SIAM J. Control Optim.29 (6) (1991) 1322-1347. Zbl0744.49011MR1132185
  5. [5] Cannarsa P., Pignotti C., Sinestrari C., Semiconcavity for optimal control problems with exit time, Discrete Contin. Dynam. Systems6 (4) (2000) 975-997. Zbl1009.49024MR1788264
  6. [6] Cannarsa P., Sinestrari C., On a class of nonlinear time optimal control problems, Discrete Contin. Dynam. Systems1 (2) (1995) 285-300. Zbl0867.49016MR1355877
  7. [7] Cannarsa P., Sinestrari C., Convexity properties of the minimum time function, Calc. Var. Partial Differential Equations3 (3) (1995) 273-298. Zbl0836.49013MR1385289
  8. [8] Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, vol. 58, Birkhäuser Boston Inc., Boston, MA, 2004. Zbl1095.49003MR2041617
  9. [9] Chow C.-L., Über Systeme von linearen partiellen Differentialgleichungen ester Ordnung, Math. Ann.117 (1939) 98-105. Zbl65.0398.01MR1880JFM65.0398.01
  10. [10] Clarke F.H., Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983. Zbl0582.49001MR709590
  11. [11] Clarke F., Necessary conditions in dynamic optimization, Mem. Amer. Math. Soc.173 (816) (2005). Zbl1093.49017MR2117692
  12. [12] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, vol. 178, Springer-Verlag, New York, 1998. Zbl1047.49500MR1488695
  13. [13] Ge Z., Horizontal path spaces and Carnot–Carathéodory metrics, Pacific J. Math.161 (2) (1993) 255-286. Zbl0797.49033MR1242199
  14. [14] I. Kupka, Géométrie sous-riemannienne, Astérisque, (241):Exp. No. 817, 5, 351–380, 1997. Séminaire Bourbaki, vol. 1995/96. Zbl0893.53013MR1472545
  15. [15] Montgomery R., A Tour of Subriemannian Geometries, their Geodesics and Applications, Mathematical Surveys and Monographs, vol. 91, American Mathematical Society, Providence, RI, 2002. Zbl1044.53022MR1867362
  16. [16] Rashevsky P.K., About connecting two points of a completely nonholonomic space by admissible curve, Uch. Zapiski Ped. Inst. Libknechta2 (1938) 83-94. 
  17. [17] Rayer C.B., The exponential map for the Lagrange problem on differentiable manifold, Philos. Trans. Roy. Soc. London Ser. A, Math. and Phys.1127 (1967) 299-344. Zbl0154.37004MR247552
  18. [18] Rifford L., Existence of Lipschitz and semiconcave control-Lyapunov functions, SIAM J. Control Optim.39 (4) (2000) 1043-1064. Zbl0982.93068MR1814266
  19. [19] Rifford L., Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim.41 (3) (2002) 659-681. Zbl1034.93053MR1939865
  20. [20] Rifford L., The stabilization problem: AGAS and SRS feedbacks, in: Optimal Control, Stabilization, and Nonsmooth Analysis, Lectures Notes in Control and Information Sciences, vol. 301, Springer-Verlag, Heidelberg, 2004, pp. 173-184. Zbl1259.93097MR2079683
  21. [21] Rifford L., A Morse–Sard theorem for the distance function on Riemannian manifolds, Manuscripta Math.113 (2004) 251-265. Zbl1051.53050MR2128549
  22. [22] Rifford L., À propos des sphères sous-riemanniennes, Bull. Belg. Math. Soc. Simon Stevin13 (3) (2006) 521-526. Zbl1135.53021MR2307687
  23. [23] L. Rifford, E. Trélat, On the stabilization problem for nonholonomic distributions, J. Eur. Math. Soc., in press. Zbl1194.49070
  24. [24] Trélat E., Some properties of the value function and its level sets for affine control systems with quadratic cost, J. Dynamical Control Systems6 (4) (2000) 511-541. Zbl0964.49021MR1778212
  25. [25] Weinstein A., Fat bundles and symplectic manifolds, Adv. in Math.37 (1980) 239-250. Zbl0449.53035MR591728

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.