Hardy inequalities with non-standard remainder terms

Andrea Cianchi; Adele Ferone

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 5, page 889-906
  • ISSN: 0294-1449

How to cite

top

Cianchi, Andrea, and Ferone, Adele. "Hardy inequalities with non-standard remainder terms." Annales de l'I.H.P. Analyse non linéaire 25.5 (2008): 889-906. <http://eudml.org/doc/78818>.

@article{Cianchi2008,
author = {Cianchi, Andrea, Ferone, Adele},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quantitative Hardy inequalities; quantitative Hardy-Littlewood inequalities; symmetrization; rearrangement invariant spaces},
language = {eng},
number = {5},
pages = {889-906},
publisher = {Elsevier},
title = {Hardy inequalities with non-standard remainder terms},
url = {http://eudml.org/doc/78818},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Cianchi, Andrea
AU - Ferone, Adele
TI - Hardy inequalities with non-standard remainder terms
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 5
SP - 889
EP - 906
LA - eng
KW - quantitative Hardy inequalities; quantitative Hardy-Littlewood inequalities; symmetrization; rearrangement invariant spaces
UR - http://eudml.org/doc/78818
ER -

References

top
  1. [1] Adams R.A., Sobolev Spaces, Academic Press, Orlando, 1975. Zbl0314.46030MR450957
  2. [2] Adimurthi, Chaudhuri N., Ramaswamy M., An improved Hardy–Sobolev inequality and its applications, Proc. Amer. Math. Soc.130 (2002) 489-505. Zbl0987.35049MR1862130
  3. [3] Adimurthi, Esteban M.J., An improved Hardy–Sobolev inequality in W 1 , p and its applications to Schrödinger operators, NoDEA Nonlin. Differential Equation Appl.12 (2005) 243-263. Zbl1089.35035MR2184082
  4. [4] Barbatis G., Filippas S., Tertikas A., A unified approach to improved L p Hardy inequalities with best constants, Trans. Amer. Math. Soc.356 (2004) 2169-2196. Zbl1129.26019MR2048514
  5. [5] Bartsch T., Weth T., Willem M., A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator, Calc. Var. Part. Diff. Eq.18 (2003) 57-75. Zbl1059.31006MR2018667
  6. [6] Bennett C., Sharpley R., Interpolation of Operators, Academic Press, Boston, 1988. Zbl0647.46057MR928802
  7. [7] Bianchi G., Egnell H., A note on the Sobolev inequality, J. Funct. Anal.100 (1991) 18-24. Zbl0755.46014MR1124290
  8. [8] Brezis H., Lieb E., Sobolev inequalities with remainder terms, J. Funct. Anal.62 (1985) 73-86. Zbl0577.46031MR790771
  9. [9] Brezis H., Marcus M., Shafrir I., Extremal functions for Hardy's inequality with weights, J. Funct. Anal.171 (2000) 177-191. Zbl0953.26006MR1742864
  10. [10] Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983) 437-477. Zbl0541.35029MR709644
  11. [11] Brezis H., Wainger S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Part. Diff. Eq.5 (1980) 773-789. Zbl0437.35071MR579997
  12. [12] Brothers J.E., Ziemer W.P., Minimal rearrangements of Sobolev functions, J. Reine Angew. Math.384 (1988) 419-431. Zbl0633.46030MR929981
  13. [13] Cianchi A., A quantitative Sobolev inequality in BV, J. Funct. Anal.237 (2006) 466-481. Zbl1110.46020MR2230346
  14. [14] A. Cianchi, Sharp Morrey–Sobolev inequalities and the distance from extremals, Trans. Amer. Math. Soc., in press. Zbl1153.46019MR2395175
  15. [15] A. Cianchi, A. Ferone, A strenghtened version of the Hardy–Littlewood inequality, preprint. Zbl1155.26017
  16. [16] A. Cianchi, N. Fusco, F. Maggi, A. Pratelli, The sharp Sobolev inequality in quantitative form, preprint. Zbl1185.46025MR2538501
  17. [17] Cwikel M., Pustylnik E., Sobolev type embeddings in the limiting case, J. Fourier Anal. Appl.4 (1998) 433-446. Zbl0930.46027MR1658620
  18. [18] Detalla A., Horiuchi T., Ando H., Missing terms in Hardy–Sobolev inequalities and its applications, Far East J. Math. Sci.14 (2004) 333-359. Zbl1109.26019MR2108051
  19. [19] Dolbeault J., Esteban M.J., Loss M., Vega L., An analytical proof of Hardy-like inequalities related to the Dirac operator, J. Funct. Anal.216 (2004) 1-21. Zbl1060.35120MR2091354
  20. [20] Edmunds D.E., Kerman R.A., Pick L., Optimal Sobolev imbeddings involving rearrangement invariant quasi-norms, J. Funct. Anal.170 (2000) 307-355. Zbl0955.46019MR1740655
  21. [21] N. Fusco, F. Maggi, A. Pratelli, The sharp quantitative Sobolev inequality in BV, preprint. Zbl1185.46025
  22. [22] Filippas S., Maz'ya V.G., Tertikas A., On a question of Brezis and Marcus, Calc. Var. Part. Diff. Eq.25 (2006) 491-501. Zbl1121.26014MR2214621
  23. [23] Gazzola F., Grunau H.C., Mitidieri E., Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc.356 (2004) 2149-2168. Zbl1079.46021MR2048513
  24. [24] Gazzola F., Grunau H.C., Squassina M., Existence and non-existence results for critical growth biharmonic elliptic equations, Calc. Var. Part. Diff. Eq.18 (2003) 117-143. Zbl1290.35063MR2010961
  25. [25] Hansson K., Imbedding theorems of Sobolev type in potential theory, Math. Scand.45 (1979) 77-102. Zbl0437.31009MR567435
  26. [26] Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., vol. 1150, Springer-Verlag, Berlin, 1985. Zbl0593.35002MR810619
  27. [27] Maz'ya V.G., Sobolev Spaces, Springer-Verlag, Berlin, 1985. Zbl0692.46023MR817985
  28. [28] Opic B., Kufner A., Hardy-type Inequalities, Longman Scientific Technical, Harlow, 1990. Zbl0698.26007MR1069756
  29. [29] Pohozhaev S.I., On the imbedding Sobolev theorem for p l = n , in: Doklady Conference, Section Math., Moscow Power Inst., 1965, pp. 158-170, (Russian). 
  30. [30] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl.110 (1976) 353-372. Zbl0353.46018MR463908
  31. [31] Tidblom J., A Hardy inequality in the half-space, J. Funct. Anal.221 (2005) 482-495. Zbl1077.26010MR2124873
  32. [32] Trudinger N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech.17 (1967) 473-483. Zbl0163.36402MR216286
  33. [33] Vazquez J.L., Zuazua E., The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal.173 (2000) 103-153. Zbl0953.35053MR1760280
  34. [34] Yudovich V.I., Some estimates connected with integral operators and with solutions of elliptic equations, Soviet Math. Dokl.2 (1961) 746-749. Zbl0144.14501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.