Hardy inequalities with non-standard remainder terms
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 5, page 889-906
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCianchi, Andrea, and Ferone, Adele. "Hardy inequalities with non-standard remainder terms." Annales de l'I.H.P. Analyse non linéaire 25.5 (2008): 889-906. <http://eudml.org/doc/78818>.
@article{Cianchi2008,
author = {Cianchi, Andrea, Ferone, Adele},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quantitative Hardy inequalities; quantitative Hardy-Littlewood inequalities; symmetrization; rearrangement invariant spaces},
language = {eng},
number = {5},
pages = {889-906},
publisher = {Elsevier},
title = {Hardy inequalities with non-standard remainder terms},
url = {http://eudml.org/doc/78818},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Cianchi, Andrea
AU - Ferone, Adele
TI - Hardy inequalities with non-standard remainder terms
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 5
SP - 889
EP - 906
LA - eng
KW - quantitative Hardy inequalities; quantitative Hardy-Littlewood inequalities; symmetrization; rearrangement invariant spaces
UR - http://eudml.org/doc/78818
ER -
References
top- [1] Adams R.A., Sobolev Spaces, Academic Press, Orlando, 1975. Zbl0314.46030MR450957
- [2] Adimurthi, Chaudhuri N., Ramaswamy M., An improved Hardy–Sobolev inequality and its applications, Proc. Amer. Math. Soc.130 (2002) 489-505. Zbl0987.35049MR1862130
- [3] Adimurthi, Esteban M.J., An improved Hardy–Sobolev inequality in and its applications to Schrödinger operators, NoDEA Nonlin. Differential Equation Appl.12 (2005) 243-263. Zbl1089.35035MR2184082
- [4] Barbatis G., Filippas S., Tertikas A., A unified approach to improved Hardy inequalities with best constants, Trans. Amer. Math. Soc.356 (2004) 2169-2196. Zbl1129.26019MR2048514
- [5] Bartsch T., Weth T., Willem M., A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator, Calc. Var. Part. Diff. Eq.18 (2003) 57-75. Zbl1059.31006MR2018667
- [6] Bennett C., Sharpley R., Interpolation of Operators, Academic Press, Boston, 1988. Zbl0647.46057MR928802
- [7] Bianchi G., Egnell H., A note on the Sobolev inequality, J. Funct. Anal.100 (1991) 18-24. Zbl0755.46014MR1124290
- [8] Brezis H., Lieb E., Sobolev inequalities with remainder terms, J. Funct. Anal.62 (1985) 73-86. Zbl0577.46031MR790771
- [9] Brezis H., Marcus M., Shafrir I., Extremal functions for Hardy's inequality with weights, J. Funct. Anal.171 (2000) 177-191. Zbl0953.26006MR1742864
- [10] Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math.36 (1983) 437-477. Zbl0541.35029MR709644
- [11] Brezis H., Wainger S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Part. Diff. Eq.5 (1980) 773-789. Zbl0437.35071MR579997
- [12] Brothers J.E., Ziemer W.P., Minimal rearrangements of Sobolev functions, J. Reine Angew. Math.384 (1988) 419-431. Zbl0633.46030MR929981
- [13] Cianchi A., A quantitative Sobolev inequality in BV, J. Funct. Anal.237 (2006) 466-481. Zbl1110.46020MR2230346
- [14] A. Cianchi, Sharp Morrey–Sobolev inequalities and the distance from extremals, Trans. Amer. Math. Soc., in press. Zbl1153.46019MR2395175
- [15] A. Cianchi, A. Ferone, A strenghtened version of the Hardy–Littlewood inequality, preprint. Zbl1155.26017
- [16] A. Cianchi, N. Fusco, F. Maggi, A. Pratelli, The sharp Sobolev inequality in quantitative form, preprint. Zbl1185.46025MR2538501
- [17] Cwikel M., Pustylnik E., Sobolev type embeddings in the limiting case, J. Fourier Anal. Appl.4 (1998) 433-446. Zbl0930.46027MR1658620
- [18] Detalla A., Horiuchi T., Ando H., Missing terms in Hardy–Sobolev inequalities and its applications, Far East J. Math. Sci.14 (2004) 333-359. Zbl1109.26019MR2108051
- [19] Dolbeault J., Esteban M.J., Loss M., Vega L., An analytical proof of Hardy-like inequalities related to the Dirac operator, J. Funct. Anal.216 (2004) 1-21. Zbl1060.35120MR2091354
- [20] Edmunds D.E., Kerman R.A., Pick L., Optimal Sobolev imbeddings involving rearrangement invariant quasi-norms, J. Funct. Anal.170 (2000) 307-355. Zbl0955.46019MR1740655
- [21] N. Fusco, F. Maggi, A. Pratelli, The sharp quantitative Sobolev inequality in BV, preprint. Zbl1185.46025
- [22] Filippas S., Maz'ya V.G., Tertikas A., On a question of Brezis and Marcus, Calc. Var. Part. Diff. Eq.25 (2006) 491-501. Zbl1121.26014MR2214621
- [23] Gazzola F., Grunau H.C., Mitidieri E., Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc.356 (2004) 2149-2168. Zbl1079.46021MR2048513
- [24] Gazzola F., Grunau H.C., Squassina M., Existence and non-existence results for critical growth biharmonic elliptic equations, Calc. Var. Part. Diff. Eq.18 (2003) 117-143. Zbl1290.35063MR2010961
- [25] Hansson K., Imbedding theorems of Sobolev type in potential theory, Math. Scand.45 (1979) 77-102. Zbl0437.31009MR567435
- [26] Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., vol. 1150, Springer-Verlag, Berlin, 1985. Zbl0593.35002MR810619
- [27] Maz'ya V.G., Sobolev Spaces, Springer-Verlag, Berlin, 1985. Zbl0692.46023MR817985
- [28] Opic B., Kufner A., Hardy-type Inequalities, Longman Scientific Technical, Harlow, 1990. Zbl0698.26007MR1069756
- [29] Pohozhaev S.I., On the imbedding Sobolev theorem for , in: Doklady Conference, Section Math., Moscow Power Inst., 1965, pp. 158-170, (Russian).
- [30] Talenti G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl.110 (1976) 353-372. Zbl0353.46018MR463908
- [31] Tidblom J., A Hardy inequality in the half-space, J. Funct. Anal.221 (2005) 482-495. Zbl1077.26010MR2124873
- [32] Trudinger N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech.17 (1967) 473-483. Zbl0163.36402MR216286
- [33] Vazquez J.L., Zuazua E., The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal.173 (2000) 103-153. Zbl0953.35053MR1760280
- [34] Yudovich V.I., Some estimates connected with integral operators and with solutions of elliptic equations, Soviet Math. Dokl.2 (1961) 746-749. Zbl0144.14501
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.