A stochastic lagrangian proof of global existence of the Navier-Stokes equations for flows with small Reynolds number
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 1, page 181-189
- ISSN: 0294-1449
Access Full Article
topHow to cite
topIyer, Gautam. "A stochastic lagrangian proof of global existence of the Navier-Stokes equations for flows with small Reynolds number." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 181-189. <http://eudml.org/doc/78834>.
@article{Iyer2009,
author = {Iyer, Gautam},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {decay estimate; Hölder spaces},
language = {eng},
number = {1},
pages = {181-189},
publisher = {Elsevier},
title = {A stochastic lagrangian proof of global existence of the Navier-Stokes equations for flows with small Reynolds number},
url = {http://eudml.org/doc/78834},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Iyer, Gautam
TI - A stochastic lagrangian proof of global existence of the Navier-Stokes equations for flows with small Reynolds number
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 181
EP - 189
LA - eng
KW - decay estimate; Hölder spaces
UR - http://eudml.org/doc/78834
ER -
References
top- [1] Calderón A.P., Zygmund A., Singular integrals and periodic functions, Studia Math.14 (1954) 249-271, (1955). Zbl0064.10401MR69310
- [2] Chorin A.J., Marsden J.E., A Mathematical Introduction to Fluid Mechanics, Texts in Applied Mathematics, vol. 4, third ed., Springer-Verlag, New York, 1993. Zbl0774.76001
- [3] Constantin P., Foias C., Navier–Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. Zbl0687.35071MR972259
- [4] Constantin P., An Eulerian–Lagrangian approach for incompressible fluids: local theory, J. Amer. Math. Soc.14 (2) (2001) 263-278, (electronic). Zbl0997.76009MR1815212
- [5] Constantin P., Iyer G., A stochastic Lagrangian representation of the 3-dimensional incompressible Navier–Stokes equations, Comm. Pure Appl. Math. (2006), in press, available at, arXiv:math.PR/0511067. Zbl1156.60048
- [6] Constantin P., Iyer G., Stochastic Lagrangian transport and generalized relative entropies, Commun. Math. Sci.4 (4) (2006) 767-777. Zbl1120.35046MR2264819
- [7] Constantin P., Kiselev A., Ryzhik L., Zlatoŝ A., Diffusion and mixing in fluid flow, Ann. Math. (2006), in press, available at arXiv:, math.AP/0509663. Zbl1180.35084MR2434887
- [8] Kato T., Fujita H., On the nonstationary Navier–Stokes system, Rend. Sem. Mat. Univ. Padova32 (1962) 243-260. Zbl0114.05002MR142928
- [9] Fannjiang A., Kiselev A., Ryzhik L., Quenching of reaction by cellular flows, Geom. Funct. Anal.16 (1) (2006) 40-69. Zbl1097.35077MR2221252
- [10] Fefferman C.L., Existence and smoothness of the Navier–Stokes equation, in: The Millennium Prize Problems, Clay Math. Inst., Cambridge, MA, 2006, pp. 57-67. Zbl1194.35002MR2238274
- [11] Freidlin M., Functional Integration and Partial Differential Equations, Annals of Mathematics Studies, vol. 109, Princeton University Press, Princeton, NJ, 1985. Zbl0568.60057MR833742
- [12] Friedman A., Stochastic Differential Equations and Applications. Vol. 1, Probability and Mathematical Statistics, vol. 28, Academic Press Harcourt Brace Jovanovich Publishers, New York, 1975. Zbl0323.60056MR494490
- [13] Gallagher I., Chemin J.-Y., On the global wellposedness of the 3-D Navier–Stokes equations with large initial data, Preprint, available at arXiv:, math.AP/0508374. MR2290141
- [14] Iyer G., A stochastic perturbation of inviscid flows, Commun. Math. Phys.266 (3) (2006) 631-645, available at arXiv:, math.AP/0505066. Zbl1127.76017MR2238892
- [15] G. Iyer, A stochastic Lagrangian formulation of the Navier–Stokes and related transport equations, Ph.D. Thesis, University of Chicago, 2006.
- [16] Karatzas I., Shreve S.E., Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, vol. 113, second ed., Springer-Verlag, New York, 1991. Zbl0734.60060MR1121940
- [17] Koch H., Tataru D., Well-posedness for the Navier–Stokes equations, Adv. Math.157 (1) (2001) 22-35. Zbl0972.35084MR1808843
- [18] Krylov N.V., Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics, vol. 12, American Mathematical Society, Providence, RI, 1996. Zbl0865.35001MR1406091
- [19] Krylov N.V., Rozovskiĭ B.L., Stochastic partial differential equations and diffusion processes, Uspekhi Mat. Nauk37 (6(228)) (1982) 75-95, (in Russian). Zbl0508.60054MR683274
- [20] Kunita H., Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, vol. 24, Cambridge University Press, Cambridge, 1997, Reprint of the 1990 original. Zbl0743.60052MR1472487
- [21] Rozovskiĭ B.L., Stochastic Evolution Systems: Linear Theory and Applications to Nonlinear Filtering, Mathematics and its Applications (Soviet Series), vol. 35, Kluwer Academic Publishers Group, Dordrecht, 1990, Translated from the Russian by A. Yarkho. Zbl0724.60070MR1135324
- [22] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.