A stochastic lagrangian proof of global existence of the Navier-Stokes equations for flows with small Reynolds number

Gautam Iyer

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 1, page 181-189
  • ISSN: 0294-1449

How to cite

top

Iyer, Gautam. "A stochastic lagrangian proof of global existence of the Navier-Stokes equations for flows with small Reynolds number." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 181-189. <http://eudml.org/doc/78834>.

@article{Iyer2009,
author = {Iyer, Gautam},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {decay estimate; Hölder spaces},
language = {eng},
number = {1},
pages = {181-189},
publisher = {Elsevier},
title = {A stochastic lagrangian proof of global existence of the Navier-Stokes equations for flows with small Reynolds number},
url = {http://eudml.org/doc/78834},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Iyer, Gautam
TI - A stochastic lagrangian proof of global existence of the Navier-Stokes equations for flows with small Reynolds number
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 181
EP - 189
LA - eng
KW - decay estimate; Hölder spaces
UR - http://eudml.org/doc/78834
ER -

References

top
  1. [1] Calderón A.P., Zygmund A., Singular integrals and periodic functions, Studia Math.14 (1954) 249-271, (1955). Zbl0064.10401MR69310
  2. [2] Chorin A.J., Marsden J.E., A Mathematical Introduction to Fluid Mechanics, Texts in Applied Mathematics, vol. 4, third ed., Springer-Verlag, New York, 1993. Zbl0774.76001
  3. [3] Constantin P., Foias C., Navier–Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. Zbl0687.35071MR972259
  4. [4] Constantin P., An Eulerian–Lagrangian approach for incompressible fluids: local theory, J. Amer. Math. Soc.14 (2) (2001) 263-278, (electronic). Zbl0997.76009MR1815212
  5. [5] Constantin P., Iyer G., A stochastic Lagrangian representation of the 3-dimensional incompressible Navier–Stokes equations, Comm. Pure Appl. Math. (2006), in press, available at, arXiv:math.PR/0511067. Zbl1156.60048
  6. [6] Constantin P., Iyer G., Stochastic Lagrangian transport and generalized relative entropies, Commun. Math. Sci.4 (4) (2006) 767-777. Zbl1120.35046MR2264819
  7. [7] Constantin P., Kiselev A., Ryzhik L., Zlatoŝ A., Diffusion and mixing in fluid flow, Ann. Math. (2006), in press, available at arXiv:, math.AP/0509663. Zbl1180.35084MR2434887
  8. [8] Kato T., Fujita H., On the nonstationary Navier–Stokes system, Rend. Sem. Mat. Univ. Padova32 (1962) 243-260. Zbl0114.05002MR142928
  9. [9] Fannjiang A., Kiselev A., Ryzhik L., Quenching of reaction by cellular flows, Geom. Funct. Anal.16 (1) (2006) 40-69. Zbl1097.35077MR2221252
  10. [10] Fefferman C.L., Existence and smoothness of the Navier–Stokes equation, in: The Millennium Prize Problems, Clay Math. Inst., Cambridge, MA, 2006, pp. 57-67. Zbl1194.35002MR2238274
  11. [11] Freidlin M., Functional Integration and Partial Differential Equations, Annals of Mathematics Studies, vol. 109, Princeton University Press, Princeton, NJ, 1985. Zbl0568.60057MR833742
  12. [12] Friedman A., Stochastic Differential Equations and Applications. Vol. 1, Probability and Mathematical Statistics, vol. 28, Academic Press Harcourt Brace Jovanovich Publishers, New York, 1975. Zbl0323.60056MR494490
  13. [13] Gallagher I., Chemin J.-Y., On the global wellposedness of the 3-D Navier–Stokes equations with large initial data, Preprint, available at arXiv:, math.AP/0508374. MR2290141
  14. [14] Iyer G., A stochastic perturbation of inviscid flows, Commun. Math. Phys.266 (3) (2006) 631-645, available at arXiv:, math.AP/0505066. Zbl1127.76017MR2238892
  15. [15] G. Iyer, A stochastic Lagrangian formulation of the Navier–Stokes and related transport equations, Ph.D. Thesis, University of Chicago, 2006. 
  16. [16] Karatzas I., Shreve S.E., Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, vol. 113, second ed., Springer-Verlag, New York, 1991. Zbl0734.60060MR1121940
  17. [17] Koch H., Tataru D., Well-posedness for the Navier–Stokes equations, Adv. Math.157 (1) (2001) 22-35. Zbl0972.35084MR1808843
  18. [18] Krylov N.V., Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics, vol. 12, American Mathematical Society, Providence, RI, 1996. Zbl0865.35001MR1406091
  19. [19] Krylov N.V., Rozovskiĭ B.L., Stochastic partial differential equations and diffusion processes, Uspekhi Mat. Nauk37 (6(228)) (1982) 75-95, (in Russian). Zbl0508.60054MR683274
  20. [20] Kunita H., Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, vol. 24, Cambridge University Press, Cambridge, 1997, Reprint of the 1990 original. Zbl0743.60052MR1472487
  21. [21] Rozovskiĭ B.L., Stochastic Evolution Systems: Linear Theory and Applications to Nonlinear Filtering, Mathematics and its Applications (Soviet Series), vol. 35, Kluwer Academic Publishers Group, Dordrecht, 1990, Translated from the Russian by A. Yarkho. Zbl0724.60070MR1135324
  22. [22] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970. Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.