Exponential convergence for a periodically driven semilinear heat equation
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 1, page 271-284
- ISSN: 0294-1449
Access Full Article
topHow to cite
topZygouras, Nikos. "Exponential convergence for a periodically driven semilinear heat equation." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 271-284. <http://eudml.org/doc/78840>.
@article{Zygouras2009,
author = {Zygouras, Nikos},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {boundary homogenization; Harnack inequality; one space dimension; periodic source at the origin},
language = {eng},
number = {1},
pages = {271-284},
publisher = {Elsevier},
title = {Exponential convergence for a periodically driven semilinear heat equation},
url = {http://eudml.org/doc/78840},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Zygouras, Nikos
TI - Exponential convergence for a periodically driven semilinear heat equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 271
EP - 284
LA - eng
KW - boundary homogenization; Harnack inequality; one space dimension; periodic source at the origin
UR - http://eudml.org/doc/78840
ER -
References
top- [1] Bass R.F., Diffusions and Elliptic Operators, Probability and Its Applications (New York), Springer-Verlag, New York, 1998, xiv+232 pp. Zbl0914.60009MR1483890
- [2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, North Holl. Comp., 1978. Zbl0404.35001MR503330
- [3] Durrett R., Stochastic Calculus. A Practical Introduction, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996, x+341 pp. Zbl0856.60002MR1398879
- [4] Eckmann J.-P., Hairer M., Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise, Comm. Math. Phys.219 (3) (2001) 523-565. Zbl0983.60058MR1838749
- [5] Hairer M., Mattingly J.C., Pardoux E., Malliavin calculus for highly degenerate 2D stochastic Navier–Stokes equations, C. R. Math. Acad. Sci. Paris, Ser. I339 (11) (2004) 793-796. Zbl1059.60074MR2110383
- [6] Pao C.V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. Zbl0777.35001MR1212084
- [7] Sznitman A.-S., Topics in propagation of chaos, in: École d'Été de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 165-251. Zbl0732.60114MR1108185
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.