Exponential convergence for a periodically driven semilinear heat equation

Nikos Zygouras

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 1, page 271-284
  • ISSN: 0294-1449

How to cite

top

Zygouras, Nikos. "Exponential convergence for a periodically driven semilinear heat equation." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 271-284. <http://eudml.org/doc/78840>.

@article{Zygouras2009,
author = {Zygouras, Nikos},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {boundary homogenization; Harnack inequality; one space dimension; periodic source at the origin},
language = {eng},
number = {1},
pages = {271-284},
publisher = {Elsevier},
title = {Exponential convergence for a periodically driven semilinear heat equation},
url = {http://eudml.org/doc/78840},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Zygouras, Nikos
TI - Exponential convergence for a periodically driven semilinear heat equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 271
EP - 284
LA - eng
KW - boundary homogenization; Harnack inequality; one space dimension; periodic source at the origin
UR - http://eudml.org/doc/78840
ER -

References

top
  1. [1] Bass R.F., Diffusions and Elliptic Operators, Probability and Its Applications (New York), Springer-Verlag, New York, 1998, xiv+232 pp. Zbl0914.60009MR1483890
  2. [2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, North Holl. Comp., 1978. Zbl0404.35001MR503330
  3. [3] Durrett R., Stochastic Calculus. A Practical Introduction, Probability and Stochastics Series, CRC Press, Boca Raton, FL, 1996, x+341 pp. Zbl0856.60002MR1398879
  4. [4] Eckmann J.-P., Hairer M., Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise, Comm. Math. Phys.219 (3) (2001) 523-565. Zbl0983.60058MR1838749
  5. [5] Hairer M., Mattingly J.C., Pardoux E., Malliavin calculus for highly degenerate 2D stochastic Navier–Stokes equations, C. R. Math. Acad. Sci. Paris, Ser. I339 (11) (2004) 793-796. Zbl1059.60074MR2110383
  6. [6] Pao C.V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. Zbl0777.35001MR1212084
  7. [7] Sznitman A.-S., Topics in propagation of chaos, in: École d'Été de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 165-251. Zbl0732.60114MR1108185

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.