Asymptotic analysis of the -laplacian flow in an exterior domain
Razvan Gabriel Iagar; Juan Luis Vázquez
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 2, page 497-520
- ISSN: 0294-1449
Access Full Article
topHow to cite
topIagar, Razvan Gabriel, and Vázquez, Juan Luis. "Asymptotic analysis of the $p$-laplacian flow in an exterior domain." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 497-520. <http://eudml.org/doc/78853>.
@article{Iagar2009,
author = {Iagar, Razvan Gabriel, Vázquez, Juan Luis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {evolutionary -Laplacian equation; comparism with exact solution},
language = {eng},
number = {2},
pages = {497-520},
publisher = {Elsevier},
title = {Asymptotic analysis of the $p$-laplacian flow in an exterior domain},
url = {http://eudml.org/doc/78853},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Iagar, Razvan Gabriel
AU - Vázquez, Juan Luis
TI - Asymptotic analysis of the $p$-laplacian flow in an exterior domain
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 497
EP - 520
LA - eng
KW - evolutionary -Laplacian equation; comparism with exact solution
UR - http://eudml.org/doc/78853
ER -
References
top- [1] Abdellaoui B., Peral I., Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian with a critical potential, Ann. Mat. Pura Appl.182 (3) (2003) 247-270. Zbl1223.35151MR2000444
- [2] Brandle C., Quirós F., Vázquez J.L., Asymptotic behaviour of the porous media equation in domains with holes, Interfaces and Free Boundaries9 (2007) 211-233. Zbl1131.35043MR2314059
- [3] Diaz J.I., Saa E., Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math.307 (12) (1987) 521-524, (in French). Zbl0656.35039MR916325
- [4] DiBenedetto E., Degenerate Parabolic Equations, Series Universitext, Springer-Verlag, New York, 1993. Zbl0794.35090MR1230384
- [5] Esteban J.R., Vázquez J.L., Homogeneous diffusion in R with power-like nonlinear diffusivity, Arch. Rat. Mech. Anal.103 (1) (1988) 39-80. Zbl0683.76073MR946969
- [6] Galaktionov V., Vázquez J.L., A Stability Technique for Evolution Partial Differential Equations. A Dynamical System Approach, Progress in Nonlinear Differential Equations and Their Applications, vol. 56, Birkhäuser, 2004. Zbl1065.35002MR2020328
- [7] Galaktionov V., Vázquez J.L., Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical system approach, J. Funct. Anal.100 (2) (1991) 435-462. Zbl0755.35010MR1125235
- [8] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2002. Zbl1042.35002MR1814364
- [9] Gilding B., Gonzerkiewicz J., Localization of solutions of exterior domain problems for the porous media equation with radial symmetry, SIAM J. Math. Anal.31 (2000) 862-893. Zbl0953.35076MR1752420
- [10] B. Gilding, J. Gonzerkiewicz, Large time behaviour of solutions of the exterior-domain Cauchy–Dirichlet problem for the porous media equation with homogeneous boundary data, Preprint, 2005. Zbl1159.35040MR2138640
- [11] Iagar R., Sánchez A., Vázquez J.L., Radial equivalence for the two basic nonlinear degenerate diffusion equations, J. Math. Pures Appl.89 (1) (2008) 1-24. Zbl1139.35067MR2378087
- [12] R. Iagar, J.L. Vázquez, Anomalous large-time behaviour of the p-Laplacian flow in an exterior domain in low dimension, Preprint, 2008. Zbl1185.35021MR2578611
- [13] Ishige K., Movement of hot spots on the exterior domain of a ball under the Neumann boundary condition, J. Differential Equations212 (2) (2005) 394-431. Zbl1096.35055MR2129097
- [14] K. Ishige, Movement of hot spots on the exterior domain of a ball, Preprint. Zbl1152.35321
- [15] Kamin S., Vázquez J.L., Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana4 (2) (1988) 339-354. Zbl0699.35158MR1028745
- [16] Kamin S., Vázquez J.L., Asymptotic behaviour of solutions of the porous medium equations with changing sign, SIAM J. Math. Anal.22 (1) (1991) 34-45. Zbl0755.35011MR1080145
- [17] Quirós F., Vázquez J.L., Asymptotic behaviour of the porous medium equation in an exterior domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci.28 (4) (1999) 183-227. Zbl1157.35319MR1736227
- [18] Vázquez J.L., Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford University Press, Oxford, 2006. Zbl1113.35004MR2282669
- [19] Vázquez J.L., Asymptotic behaviour for the porous medium equation posed in the whole space, J. Evol. Equations3 (1) (2003) 67-118, Dedicated to Philippe Benilan. Zbl1036.35108MR1977429
- [20] Vázquez J.L., The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, Oxford University Press, 2007. Zbl1107.35003MR2286292
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.