Asymptotic analysis of the p -laplacian flow in an exterior domain

Razvan Gabriel Iagar; Juan Luis Vázquez

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 2, page 497-520
  • ISSN: 0294-1449

How to cite

top

Iagar, Razvan Gabriel, and Vázquez, Juan Luis. "Asymptotic analysis of the $p$-laplacian flow in an exterior domain." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 497-520. <http://eudml.org/doc/78853>.

@article{Iagar2009,
author = {Iagar, Razvan Gabriel, Vázquez, Juan Luis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {evolutionary -Laplacian equation; comparism with exact solution},
language = {eng},
number = {2},
pages = {497-520},
publisher = {Elsevier},
title = {Asymptotic analysis of the $p$-laplacian flow in an exterior domain},
url = {http://eudml.org/doc/78853},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Iagar, Razvan Gabriel
AU - Vázquez, Juan Luis
TI - Asymptotic analysis of the $p$-laplacian flow in an exterior domain
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 497
EP - 520
LA - eng
KW - evolutionary -Laplacian equation; comparism with exact solution
UR - http://eudml.org/doc/78853
ER -

References

top
  1. [1] Abdellaoui B., Peral I., Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian with a critical potential, Ann. Mat. Pura Appl.182 (3) (2003) 247-270. Zbl1223.35151MR2000444
  2. [2] Brandle C., Quirós F., Vázquez J.L., Asymptotic behaviour of the porous media equation in domains with holes, Interfaces and Free Boundaries9 (2007) 211-233. Zbl1131.35043MR2314059
  3. [3] Diaz J.I., Saa E., Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math.307 (12) (1987) 521-524, (in French). Zbl0656.35039MR916325
  4. [4] DiBenedetto E., Degenerate Parabolic Equations, Series Universitext, Springer-Verlag, New York, 1993. Zbl0794.35090MR1230384
  5. [5] Esteban J.R., Vázquez J.L., Homogeneous diffusion in R with power-like nonlinear diffusivity, Arch. Rat. Mech. Anal.103 (1) (1988) 39-80. Zbl0683.76073MR946969
  6. [6] Galaktionov V., Vázquez J.L., A Stability Technique for Evolution Partial Differential Equations. A Dynamical System Approach, Progress in Nonlinear Differential Equations and Their Applications, vol. 56, Birkhäuser, 2004. Zbl1065.35002MR2020328
  7. [7] Galaktionov V., Vázquez J.L., Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical system approach, J. Funct. Anal.100 (2) (1991) 435-462. Zbl0755.35010MR1125235
  8. [8] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2002. Zbl1042.35002MR1814364
  9. [9] Gilding B., Gonzerkiewicz J., Localization of solutions of exterior domain problems for the porous media equation with radial symmetry, SIAM J. Math. Anal.31 (2000) 862-893. Zbl0953.35076MR1752420
  10. [10] B. Gilding, J. Gonzerkiewicz, Large time behaviour of solutions of the exterior-domain Cauchy–Dirichlet problem for the porous media equation with homogeneous boundary data, Preprint, 2005. Zbl1159.35040MR2138640
  11. [11] Iagar R., Sánchez A., Vázquez J.L., Radial equivalence for the two basic nonlinear degenerate diffusion equations, J. Math. Pures Appl.89 (1) (2008) 1-24. Zbl1139.35067MR2378087
  12. [12] R. Iagar, J.L. Vázquez, Anomalous large-time behaviour of the p-Laplacian flow in an exterior domain in low dimension, Preprint, 2008. Zbl1185.35021MR2578611
  13. [13] Ishige K., Movement of hot spots on the exterior domain of a ball under the Neumann boundary condition, J. Differential Equations212 (2) (2005) 394-431. Zbl1096.35055MR2129097
  14. [14] K. Ishige, Movement of hot spots on the exterior domain of a ball, Preprint. Zbl1152.35321
  15. [15] Kamin S., Vázquez J.L., Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana4 (2) (1988) 339-354. Zbl0699.35158MR1028745
  16. [16] Kamin S., Vázquez J.L., Asymptotic behaviour of solutions of the porous medium equations with changing sign, SIAM J. Math. Anal.22 (1) (1991) 34-45. Zbl0755.35011MR1080145
  17. [17] Quirós F., Vázquez J.L., Asymptotic behaviour of the porous medium equation in an exterior domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci.28 (4) (1999) 183-227. Zbl1157.35319MR1736227
  18. [18] Vázquez J.L., Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford University Press, Oxford, 2006. Zbl1113.35004MR2282669
  19. [19] Vázquez J.L., Asymptotic behaviour for the porous medium equation posed in the whole space, J. Evol. Equations3 (1) (2003) 67-118, Dedicated to Philippe Benilan. Zbl1036.35108MR1977429
  20. [20] Vázquez J.L., The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, Oxford University Press, 2007. Zbl1107.35003MR2286292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.