Minimizers of Dirichlet functionals on the -torus and the weak KAM theory
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 2, page 521-545
- ISSN: 0294-1449
Access Full Article
topHow to cite
topWolansky, G.. "Minimizers of Dirichlet functionals on the $n$-torus and the weak KAM theory." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 521-545. <http://eudml.org/doc/78854>.
@article{Wolansky2009,
author = {Wolansky, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Monge-Kantorovich; optimal mass transport; periodic Lagrangian; effective Hamiltonian; rotation vector; Dirichlet functional; KAM theory},
language = {eng},
number = {2},
pages = {521-545},
publisher = {Elsevier},
title = {Minimizers of Dirichlet functionals on the $n$-torus and the weak KAM theory},
url = {http://eudml.org/doc/78854},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Wolansky, G.
TI - Minimizers of Dirichlet functionals on the $n$-torus and the weak KAM theory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 521
EP - 545
LA - eng
KW - Monge-Kantorovich; optimal mass transport; periodic Lagrangian; effective Hamiltonian; rotation vector; Dirichlet functional; KAM theory
UR - http://eudml.org/doc/78854
ER -
References
top- [1] Arriola E.A., Soler J., A variational approach to the Schrödinger–Poisson system: Asymptotic behaviour, Breathers, and Stability, J. Stat. Phys.103 (5–6) (2001) 1069-1106. Zbl0999.82062MR1851367
- [2] Aubry S., The twist map, the extended Frenkel–Kontrovna model and the devil's staircase, Physica D7 (1983) 240-258. Zbl0559.58013MR719055
- [3] Bernard P., Buffoni B., Optimal mass transportation and mather theory, Preprint, http://arxiv.org/abs/math.DS/0412299. Zbl1241.49025MR2283105
- [4] Evans L.C., A survey of partial differential equations methods in weak KAM theory, Comm. Pure Appl. Math.57 (4) (2004) 445-480. Zbl1040.37046MR2026176
- [5] Evans L.C., Gomes D., Effective Hamiltonians and averaging for Hamiltonian dynamics. I, Arch. Ration. Mech. Anal.157 (1) (2001) 1-33. Zbl0986.37056MR1822413
- [6] Evans L.C., Gomes D., Effective Hamiltonians and averaging for Hamiltonian dynamics. II, Arch. Ration. Mech. Anal.161 (4) (2002) 271-305. Zbl1100.37039MR1891169
- [7] Fathi A., The weak KAM Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics Series, vol. 88, Cambridge University Press, 2003.
- [8] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977. Zbl0361.35003MR473443
- [9] Gomes D.A., Oberman A.M., Computing the effective Hamiltonian using a variational approach, SIAM J. Control Optim.43 (3) (2004) 792-812. Zbl1081.49024MR2114376
- [10] Govin M., Chandre C., Jauslin H.R., Kolmogorov–Arnold–Moser-Renormalization-Group analysis of stability in Hamiltonian flows, Phys. Rev. Lett.79 (1997) 3881-3884.
- [11] L. Granieri, On action minimizing measures for the Monge–Kantorovich problem, Preprint, July 2004. Zbl1133.37027MR2346457
- [12] Hedlund G.A., Geodesics on a 3 dimensional Riemannian manifolds with periodic coefficients, Ann. of Math.33 (1932) 719-739. Zbl0006.32601MR1503086JFM58.1256.01
- [13] Hiriart-Urruty J.B., Lemarechal C., Convex Analysis and Minimization Algorithms II, Grundlehren der Mathematischen Wissenschaften, vol. 306, Springer-Verlag, 1993, (Chapter 10). Zbl0795.49002MR1295240
- [14] Illner R., Zweifel P.F., Lange H., Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner–Poisson and Schrödinger–Poisson systems, Math. Meth. Appl. Sci.17 (1994) 349-376. Zbl0808.35116MR1273317
- [15] Keller J.B., Semiclassical mechanics, SIAM Rev.27 (4) (1985) 485-504. Zbl0581.70012MR812451
- [16] Luigi D.P., Stella G.M., Granieri L., Minimal measures, one-dimensional currents and the Monge–Kantorovich problem, Calc. Var. Partial Differential Equations27 (1) (2006) 1-23. Zbl1096.37033MR2241304
- [17] Mañè R., On the minimizing measures of Lagrangian dynamical systems, Nonlinearity5 (1992) 623-638. Zbl0799.58030MR1166538
- [18] Mather J.N., Existence of quasi-periodic orbits for twist homeomorphisms on the annulus, Topology21 (1982) 457-467. Zbl0506.58032MR670747
- [19] Mather J.N., Minimal measures, Comment. Math. Helv.64 (1989) 375-394. Zbl0689.58025MR998855
- [20] Moser J., Monotone twist mappings and the calculus of variations, Ergodic Theory Dynam. Systems6 (1986) 401-413. Zbl0619.49020MR863203
- [21] Rubinstein J., Wolansky G., Eikonal functions: Old and new, in: Givoli D., Grote M.J., Papanicolaou G. (Eds.), A Celebration of Mathematical Modeling: The Joseph B. Keller Anniversary Volume, Kluwer, 2004. MR2160990
- [22] Siburg K.F., The Principle of Least Action in Geometry and Dynamics, Lecture Notes in Mathematics, vol. 1844, Springer, 2004. Zbl1060.37048MR2076302
- [23] Villani C., Topics in Optimal Transportation, Graduate Studies in Math., vol. 58, Amer. Math. Soc., 2003. Zbl1106.90001MR1964483
- [24] Wolansky G., Optimal transportation in the presence of a prescribed pressure field, Preprint, arXiv:math-ph/0306070v5.
- [25] G. Wolansky, On time reversible description of the process of coagulation and fragmentation, Arch. Rat. Mech., submitted for publication. Zbl1169.76052
- [26] Markowich P., Rein G., Wolansky G., Existence and nonlinear stability of stationary states of the Schrödinger–Poisson system, J. Stat. Phys.106 (2002) 1221-1239. Zbl1001.82107MR1889607
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.