Minimizers of Dirichlet functionals on the n -torus and the weak KAM theory

G. Wolansky

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 2, page 521-545
  • ISSN: 0294-1449

How to cite

top

Wolansky, G.. "Minimizers of Dirichlet functionals on the $n$-torus and the weak KAM theory." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 521-545. <http://eudml.org/doc/78854>.

@article{Wolansky2009,
author = {Wolansky, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Monge-Kantorovich; optimal mass transport; periodic Lagrangian; effective Hamiltonian; rotation vector; Dirichlet functional; KAM theory},
language = {eng},
number = {2},
pages = {521-545},
publisher = {Elsevier},
title = {Minimizers of Dirichlet functionals on the $n$-torus and the weak KAM theory},
url = {http://eudml.org/doc/78854},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Wolansky, G.
TI - Minimizers of Dirichlet functionals on the $n$-torus and the weak KAM theory
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 521
EP - 545
LA - eng
KW - Monge-Kantorovich; optimal mass transport; periodic Lagrangian; effective Hamiltonian; rotation vector; Dirichlet functional; KAM theory
UR - http://eudml.org/doc/78854
ER -

References

top
  1. [1] Arriola E.A., Soler J., A variational approach to the Schrödinger–Poisson system: Asymptotic behaviour, Breathers, and Stability, J. Stat. Phys.103 (5–6) (2001) 1069-1106. Zbl0999.82062MR1851367
  2. [2] Aubry S., The twist map, the extended Frenkel–Kontrovna model and the devil's staircase, Physica D7 (1983) 240-258. Zbl0559.58013MR719055
  3. [3] Bernard P., Buffoni B., Optimal mass transportation and mather theory, Preprint, http://arxiv.org/abs/math.DS/0412299. Zbl1241.49025MR2283105
  4. [4] Evans L.C., A survey of partial differential equations methods in weak KAM theory, Comm. Pure Appl. Math.57 (4) (2004) 445-480. Zbl1040.37046MR2026176
  5. [5] Evans L.C., Gomes D., Effective Hamiltonians and averaging for Hamiltonian dynamics. I, Arch. Ration. Mech. Anal.157 (1) (2001) 1-33. Zbl0986.37056MR1822413
  6. [6] Evans L.C., Gomes D., Effective Hamiltonians and averaging for Hamiltonian dynamics. II, Arch. Ration. Mech. Anal.161 (4) (2002) 271-305. Zbl1100.37039MR1891169
  7. [7] Fathi A., The weak KAM Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics Series, vol. 88, Cambridge University Press, 2003. 
  8. [8] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977. Zbl0361.35003MR473443
  9. [9] Gomes D.A., Oberman A.M., Computing the effective Hamiltonian using a variational approach, SIAM J. Control Optim.43 (3) (2004) 792-812. Zbl1081.49024MR2114376
  10. [10] Govin M., Chandre C., Jauslin H.R., Kolmogorov–Arnold–Moser-Renormalization-Group analysis of stability in Hamiltonian flows, Phys. Rev. Lett.79 (1997) 3881-3884. 
  11. [11] L. Granieri, On action minimizing measures for the Monge–Kantorovich problem, Preprint, July 2004. Zbl1133.37027MR2346457
  12. [12] Hedlund G.A., Geodesics on a 3 dimensional Riemannian manifolds with periodic coefficients, Ann. of Math.33 (1932) 719-739. Zbl0006.32601MR1503086JFM58.1256.01
  13. [13] Hiriart-Urruty J.B., Lemarechal C., Convex Analysis and Minimization Algorithms II, Grundlehren der Mathematischen Wissenschaften, vol. 306, Springer-Verlag, 1993, (Chapter 10). Zbl0795.49002MR1295240
  14. [14] Illner R., Zweifel P.F., Lange H., Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner–Poisson and Schrödinger–Poisson systems, Math. Meth. Appl. Sci.17 (1994) 349-376. Zbl0808.35116MR1273317
  15. [15] Keller J.B., Semiclassical mechanics, SIAM Rev.27 (4) (1985) 485-504. Zbl0581.70012MR812451
  16. [16] Luigi D.P., Stella G.M., Granieri L., Minimal measures, one-dimensional currents and the Monge–Kantorovich problem, Calc. Var. Partial Differential Equations27 (1) (2006) 1-23. Zbl1096.37033MR2241304
  17. [17] Mañè R., On the minimizing measures of Lagrangian dynamical systems, Nonlinearity5 (1992) 623-638. Zbl0799.58030MR1166538
  18. [18] Mather J.N., Existence of quasi-periodic orbits for twist homeomorphisms on the annulus, Topology21 (1982) 457-467. Zbl0506.58032MR670747
  19. [19] Mather J.N., Minimal measures, Comment. Math. Helv.64 (1989) 375-394. Zbl0689.58025MR998855
  20. [20] Moser J., Monotone twist mappings and the calculus of variations, Ergodic Theory Dynam. Systems6 (1986) 401-413. Zbl0619.49020MR863203
  21. [21] Rubinstein J., Wolansky G., Eikonal functions: Old and new, in: Givoli D., Grote M.J., Papanicolaou G. (Eds.), A Celebration of Mathematical Modeling: The Joseph B. Keller Anniversary Volume, Kluwer, 2004. MR2160990
  22. [22] Siburg K.F., The Principle of Least Action in Geometry and Dynamics, Lecture Notes in Mathematics, vol. 1844, Springer, 2004. Zbl1060.37048MR2076302
  23. [23] Villani C., Topics in Optimal Transportation, Graduate Studies in Math., vol. 58, Amer. Math. Soc., 2003. Zbl1106.90001MR1964483
  24. [24] Wolansky G., Optimal transportation in the presence of a prescribed pressure field, Preprint, arXiv:math-ph/0306070v5. 
  25. [25] G. Wolansky, On time reversible description of the process of coagulation and fragmentation, Arch. Rat. Mech., submitted for publication. Zbl1169.76052
  26. [26] Markowich P., Rein G., Wolansky G., Existence and nonlinear stability of stationary states of the Schrödinger–Poisson system, J. Stat. Phys.106 (2002) 1221-1239. Zbl1001.82107MR1889607

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.