Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints

J. Frédéric Bonnans; Audrey Hermant

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 2, page 561-598
  • ISSN: 0294-1449

How to cite

top

Bonnans, J. Frédéric, and Hermant, Audrey. "Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 561-598. <http://eudml.org/doc/78856>.

@article{Bonnans2009,
author = {Bonnans, J. Frédéric, Hermant, Audrey},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {optimal control; state constraint; mixed control-state constraint; junction conditions; necessary or sufficient second-order optimality conditions; shooting algorithm},
language = {eng},
number = {2},
pages = {561-598},
publisher = {Elsevier},
title = {Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints},
url = {http://eudml.org/doc/78856},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Bonnans, J. Frédéric
AU - Hermant, Audrey
TI - Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 561
EP - 598
LA - eng
KW - optimal control; state constraint; mixed control-state constraint; junction conditions; necessary or sufficient second-order optimality conditions; shooting algorithm
UR - http://eudml.org/doc/78856
ER -

References

top
  1. [1] J.F. Bonnans, A. Hermant, No gap second order optimality conditions for optimal control problems with a single state constraint and control. INRIA Research Report 5837, Mathematical Programming, in press. Online first doi 10.1007/s10107-007-0167-8. Zbl1167.49021
  2. [2] J.F. Bonnans, A. Hermant, Stability and sensitivity analysis for optimal control problems with a first-order state constraint, ESAIM Control Optim. Calc. Var., E-first DOI 10.1051/cocv:2008016. Zbl1148.49026
  3. [3] Bonnans J.F., Hermant A., Conditions d'optimalité du second ordre nécessaires ou suffisantes pour les problèmes de commande optimale avec une contrainte sur l'état et une commande scalaires, C. R. Math. Acad. Sci. Paris, Ser. I343 (7) (2006) 473-478. Zbl1101.49020MR2267189
  4. [4] Bonnans J.F., Hermant A., Well-posedness of the shooting algorithm for state constrained optimal control problems with a single constraint and control, SIAM J. Control Optim.46 (4) (2007) 1398-1430. Zbl1251.49036MR2346386
  5. [5] Bonnans J.F., Shapiro A., Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000. Zbl0966.49001MR1756264
  6. [6] Bonnard B., Faubourg L., Launay G., Trélat E., Optimal control with state constraints and the space shuttle re-entry problem, J. Dynam. Control Systems9 (2) (2003) 155-199. Zbl1034.49014MR1968277
  7. [7] Bryson A.E., Denham W.F., Dreyfus S.E., Optimal programming problems with inequality constraints I: Necessary conditions for extremal solutions, AIAA J.1 (1963) 2544-2550. Zbl0142.35902MR162686
  8. [8] Bulirsch R., Montrone F., Pesch H.J., Abort landing in the presence of windshear as a minimax optimal control problem. I. Necessary conditions, J. Optim. Theory Appl.70 (1991) 1-23. Zbl0726.49014MR1116220
  9. [9] Cominetti R., Penot J.P., Tangent sets to unilateral convex sets, C. R. Acad. Sci. Paris, Sér. I321 (1995) 1631-1636. Zbl0866.49026MR1367820
  10. [10] Dmitruk A.V., Maximum principle for the general optimal control problem with phase and regular mixed constraints, Computational Mathematics and Modeling4 (4) (1993) 364-377. Zbl1331.49025MR1323870
  11. [11] Dontchev A.L., Hager W.W., Lipschitzian stability for state constrained nonlinear optimal control, SIAM J. Control Optim.36 (2) (1998) 698-718, (electronic). Zbl0917.49025MR1616530
  12. [12] Dontchev A.L., Hager W.W., The Euler approximation in state constrained optimal control, Math. Comp.70 (2001) 173-203. Zbl0987.49017MR1681116
  13. [13] Dubovitskiĭ A.Ya., Milyutin A.A., Theory of the principle of the maximum, in: Methods of the Theory of Extremal Problems in Economics, Nauka, Moscow, 1981, pp. 7-47. MR694700
  14. [14] Dunford N., Schwartz J., Linear Operators, vols. I and II, Interscience, New York, 1958, 1963. Zbl0084.10402MR188745
  15. [15] Hager W.W., Lipschitz continuity for constrained processes, SIAM J. Control Optim.17 (3) (1979) 321-338. Zbl0426.90083MR528899
  16. [16] Hartl R.F., Sethi S.P., Vickson R.G., A survey of the maximum principles for optimal control problems with state constraints, SIAM Rev.37 (1995) 181-218. Zbl0832.49013MR1343211
  17. [17] Ioffe A.D., Tihomirov V.M., Theory of Extremal Problems, North-Holland Publishing Company, Amsterdam, 1979, Russian edition: Nauka, Moscow, 1974. Zbl0407.90051MR410502
  18. [18] Jacobson D.H., Lele M.M., Speyer J.L., New necessary conditions of optimality for control problems with state-variable inequality constraints, J. Math. Anal. Appl.35 (1971) 255-284. Zbl0188.47203MR284905
  19. [19] Jittorntrum K., Solution point differentiability without strict complementarity in nonlinear programming, Math. Program.21 (1984) 127-138. Zbl0571.90080MR751247
  20. [20] Kawasaki H., An envelope-like effect of infinitely many inequality constraints on second order necessary conditions for minimization problems, Math. Program.41 (1988) 73-96. Zbl0661.49012MR941318
  21. [21] Kawasaki H., Second order necessary optimality conditions for minimizing a sup-type function, Math. Program. Ser. A49 (1990/1991) 213-229. Zbl0726.90075MR1087454
  22. [22] Kawasaki H., Zeidan V., Conjugate points for variational problems with equality and inequality state constraints, SIAM J. Control Optim.39 (2) (2000) 433-456, (electronic). Zbl0972.49012MR1788066
  23. [23] Kreindler E., Additional necessary conditions for optimal control with state-variable inequality constraints, J. Optim. Theory Appl.38 (2) (1982) 241-250. Zbl0471.49023MR686867
  24. [24] Malanowski K., Stability and sensitivity of solutions to nonlinear optimal control problems, J. Appl. Math. Optim.32 (1995) 111-141. Zbl0842.49020MR1332810
  25. [25] Malanowski K., Maurer H., Sensitivity analysis for state constrained optimal control problems, Discrete Contin. Dynam. Systems4 (1998) 241-272. Zbl0952.49022MR1617298
  26. [26] Malanowski K., Maurer H., Sensitivity analysis for optimal control problems subject to higher order state constraints, Ann. Oper. Res.101 (2001) 43-73. Zbl1005.49021MR1851988
  27. [27] Malanowski K., Maurer H., Pickenhain S., Second-order sufficient conditions for state-constrained optimal control problems, J. Optim. Theory Appl.123 (2004) 595-617. Zbl1059.49027MR2102534
  28. [28] H. Maurer, On the minimum principle for optimal control problems with state constraints, Schriftenreihe des Rechenzentrum 41, Universität Münster, 1979. 
  29. [29] Milyutin A.A., The Maximum Principle in the General Problem of Optimal Control, Fizmatlit, Moscow, 2001. Zbl0998.49003
  30. [30] Milyutin A.A., Osmolovskii N.P., Calculus of Variations and Optimal Control, American Mathematical Society, Providence, RI, 1998. Zbl0911.49001MR1641590
  31. [31] H.J. Oberle, W. Grimm, Bndsco – a program for the numerical solution of optimal control problems, Technical report, Report No. 515, Institut for Flight Systems Dynamics, Oberpfaffenhofen, German Aerospace Research Establishment DLR, 1989. 
  32. [32] Osmolovskii N.P., Higher-order necessary and sufficient conditions for Pontryagin and restricted-strong minima in an optimal control problem, Dokl. Akad. Nauk SSSR303 (5) (1988) 1052-1056. Zbl0696.49045MR985410
  33. [33] Páles Z., Zeidan V., First- and second-order necessary conditions for control problems with constraints, Trans. Amer. Math. Soc.346 (2) (1994) 421-453. Zbl0819.49017MR1270667
  34. [34] Páles Z., Zeidan V., Optimal control problems with set-valued control and state constraints, SIAM J. Optim.14 (2003) 334-358, (electronic). Zbl1041.49025MR2048167
  35. [35] Páles Z., Zeidan V., Strong local optimality conditions for state constrained control problems, J. Global Optim.28 (3–4) (2004) 363-377. Zbl1152.49310MR2074794
  36. [36] Robinson S.M., Strongly regular generalized equations, Math. Oper. Res.5 (1980) 43-62. Zbl0437.90094MR561153

Citations in EuDML Documents

top
  1. Nikolai P. Osmolovskii, Second-order sufficient optimality conditions for control problems with linearly independent gradients of control constraints
  2. Nikolai P. Osmolovskii, Second-order sufficient optimality conditions for control problems with linearly independent gradients of control constraints
  3. J. Frédéric Bonnans, Xavier Dupuis, Laurent Pfeiffer, Second-order sufficient conditions for strong solutions to optimal control problems
  4. Joseph Frédéric Bonnans, Audrey Hermant, Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.