Null controllability of the complex Ginzburg-Landau equation

Lionel Rosier; Bing-Yu Zhang

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 2, page 649-673
  • ISSN: 0294-1449

How to cite

top

Rosier, Lionel, and Zhang, Bing-Yu. "Null controllability of the complex Ginzburg-Landau equation." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 649-673. <http://eudml.org/doc/78859>.

@article{Rosier2009,
author = {Rosier, Lionel, Zhang, Bing-Yu},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Ginzburg-Landau equation; null controllability; Calerman estimate},
language = {eng},
number = {2},
pages = {649-673},
publisher = {Elsevier},
title = {Null controllability of the complex Ginzburg-Landau equation},
url = {http://eudml.org/doc/78859},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Rosier, Lionel
AU - Zhang, Bing-Yu
TI - Null controllability of the complex Ginzburg-Landau equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 649
EP - 673
LA - eng
KW - Ginzburg-Landau equation; null controllability; Calerman estimate
UR - http://eudml.org/doc/78859
ER -

References

top
  1. [1] Aamo O.M., Smyshlyaev A., Krstić M., Boundary control of the linearized Ginzburg–Landau model of vortex shedding, SIAM J. Control Optim.43 (6) (2005) 1953-1971, (electronic). Zbl1082.93016MR2177789
  2. [2] Arendt W., Batty C.J.K., Hieber M., Neubrander F., Vector-Valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, vol. 96, Birkhäuser Verlag, Basel, 2001. Zbl0978.34001MR1886588
  3. [3] Bartuccelli M., Constantin P., Doering C.R., Gibbon J.D., Gisselfält M., On the possibility of soft and hard turbulence in the complex Ginzburg–Landau equation, Physica D44 (3) (1990) 421-444. Zbl0702.76061MR1076337
  4. [4] J.L. Boldrini, E. Fernández-Cara, S. Guerrero, On the controllability of the Ginzburg–Landau equation, in preparation. 
  5. [5] Bu C., An initial-boundary value problem for the Ginzburg–Landau equation, Appl. Math. Lett.5 (5) (1992) 31-34. Zbl0769.35049MR1345896
  6. [6] Chen Z., Hoffmann K.-H., Numerical solutions of an optimal control problem governed by a Ginzburg–Landau model in superconductivity, Numer. Funct. Anal. Optim.19 (7–8) (1998) 737-757. Zbl0915.65068MR1642557
  7. [7] Doubova A., Fernández-Cara E., González-Burgos M., On the controllability of the heat equation with nonlinear boundary Fourier conditions, J. Differential Equations196 (2) (2004) 385-417. Zbl1049.35042MR2028113
  8. [8] Fernández-Cara E., Null controllability of the semilinear heat equation, ESAIM Control Optim. Calc. Var.2 (1997) 87-103, (electronic). Zbl0897.93011MR1445385
  9. [9] Fu X., A weighted identity for partial differential operators of second order and its applications, C. R. Acad. Sci. Paris, Ser. I342 (8) (2006) 579-584. Zbl05045951MR2217919
  10. [10] Fursikov A.V., Imanuvilov O.Yu., Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. Zbl0862.49004MR1406566
  11. [11] Gao H., Bu C., Dirichlet inhomogeneous boundary value problem for the n + 1 complex Ginzburg–Landau equation, J. Differential Equations198 (1) (2004) 176-195. Zbl1058.35092MR2037754
  12. [12] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. Zbl0456.35001MR610244
  13. [13] Hörmander L., The Analysis of Linear Partial Differential Operators. II, Differential Operators with Constant Coefficients, Classics in Mathematics, Springer-Verlag, Berlin, 2005, Reprint of the 1983 original. Zbl1062.35004MR2108588
  14. [14] Levermore C.D., Oliver M., The complex Ginzburg–Landau equation as a model problem, in: Dynamical Systems and Probabilistic Methods in Partial Differential Equations, Berkeley, CA, 1994, Lectures in Appl. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1996, pp. 141-190. Zbl0845.35003MR1363028
  15. [15] Levermore C.D., Oliver M., Distribution-valued initial data for the complex Ginzburg–Landau equation, Comm. Partial Differential Equations22 (1–2) (1997) 39-48. Zbl0880.35110MR1434137
  16. [16] Mercado A., Osses A., Rosier L., Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems24 (1) (2008), pp. 015017, 18. Zbl1153.35407MR2384776
  17. [17] Mielke A., The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity10 (1) (1997) 199-222. Zbl0905.35043MR1430749
  18. [18] Rosier L., Zhang B.-Y., Controllability of the Ginzburg–Landau equation, C. R. Acad. Sci. Paris, Ser. I346 (3–4) (2008) 167-172. Zbl1134.35022MR2393635
  19. [19] Schneider G., Global existence via Ginzburg–Landau formalism and pseudo-orbits of Ginzburg–Landau approximations, Commun. Math. Phys.164 (1) (1994) 157-179. Zbl0803.35140MR1288157
  20. [20] Simon J., Compact sets in the space L p ( 0 , T ; B ) , Ann. Mat. Pura Appl. (4)146 (1987) 65-96. Zbl0629.46031MR916688

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.