Multiple critical points of perturbed symmetric strongly indefinite functionals

Denis Bonheure; Miguel Ramos

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 2, page 675-688
  • ISSN: 0294-1449

How to cite

top

Bonheure, Denis, and Ramos, Miguel. "Multiple critical points of perturbed symmetric strongly indefinite functionals." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 675-688. <http://eudml.org/doc/78860>.

@article{Bonheure2009,
author = {Bonheure, Denis, Ramos, Miguel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {elliptic system; strongly indefinite functional; perturbation from symmetry; Lyapunov-Schmidt reduction; genericity},
language = {eng},
number = {2},
pages = {675-688},
publisher = {Elsevier},
title = {Multiple critical points of perturbed symmetric strongly indefinite functionals},
url = {http://eudml.org/doc/78860},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Bonheure, Denis
AU - Ramos, Miguel
TI - Multiple critical points of perturbed symmetric strongly indefinite functionals
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 675
EP - 688
LA - eng
KW - elliptic system; strongly indefinite functional; perturbation from symmetry; Lyapunov-Schmidt reduction; genericity
UR - http://eudml.org/doc/78860
ER -

References

top
  1. [1] Angenent S., van der Vorst R., A superquadratic indefinite elliptic system and its Morse–Conley–Floer homology, Math. Z.231 (1999) 203-248. Zbl0939.58015MR1703347
  2. [2] Bahri A., Topological results on a certain class of functionals and application, J. Funct. Anal.41 (1981) 397-427. Zbl0499.35050MR619960
  3. [3] Bahri A., Berestycki H., A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc.267 (1981) 1-32. Zbl0476.35030MR621969
  4. [4] Bahri A., Lions P.L., Morse-index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math.41 (1988) 1027-1037. Zbl0645.58013MR968487
  5. [5] Bolle Ph., Ghoussoub N., Tehrani H., The multiplicity of solutions to non-homogeneous boundary value problems, Manuscripta Math.101 (2000) 325-350. Zbl0963.35001MR1751037
  6. [6] Castro A., Clapp M., Upper estimates for the energy of solutions of nonhomogeneous boundary value problems, Proc. Amer. Math. Soc.134 (2006) 167-175. Zbl1137.35357MR2170556
  7. [7] Clapp M., Ding Y., Hernández-Linares S., Strongly indefinite functionals with perturbed symmetries and multiple solutions of nonsymmetric elliptic systems, Electronic J. Differential Equations2004 (100) (2004) 1-18. Zbl1109.35324MR2108871
  8. [8] Clement P., de Figueiredo D.G., Mitidieri E., Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations17 (1992) 923-940. Zbl0818.35027MR1177298
  9. [9] Cwickel M., Weak type estimates and the number of bound states of Schrödinger operators, Ann. Math.106 (1977) 93-102. Zbl0362.47006
  10. [10] de Figueiredo D.G., Ding Y.H., Strongly indefinite functionals and multiple solutions of elliptic systems, Trans. Amer. Math. Soc.355 (2003) 2973-2989. Zbl1125.35338MR1975408
  11. [11] de Figueiredo D.G., Felmer P., On superquadratic elliptic systems, Trans. Amer. Math. Soc.343 (1994) 97-116. Zbl0799.35063MR1214781
  12. [12] Hulshof J., van der Vorst R., Differential systems with strongly indefinite variational structure, J. Funct. Anal.114 (1993) 32-58. Zbl0793.35038MR1220982
  13. [13] Kajikiya R., Radially symmetric solutions of semilinear elliptic equations, existence and Sobolev estimates, Hiroshima Math. J.21 (1991) 111-161. Zbl0736.35046MR1091434
  14. [14] Kajikiya R., Tanaka K., Existence of infinitely many solutions for some superlinear elliptic equations, J. Math. Anal. Appl.149 (1990) 313-321. Zbl0716.35028MR1057676
  15. [15] Lieb E.H., Bounds on the eigenvalues of the Laplace and Schrödinger operators, Bull. Amer. Math. Soc.82 (1976) 751-753. Zbl0329.35018MR407909
  16. [16] Rabinowitz P., Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc.272 (1982) 753-770. Zbl0589.35004MR662065
  17. [17] Rabinowitz P., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986. Zbl0609.58002MR845785
  18. [18] Ramos M., Tavares H., Solutions with multiple spike patterns for an elliptic system, Calc. Var. Partial Differential Equations31 (2008) 1-25. Zbl1143.35027MR2342612
  19. [19] Ramos M., Yang J., Spike-layered solutions for an elliptic system with Neumann boundary conditions, Trans. Amer. Math. Soc.357 (2005) 3265-3284. Zbl1136.35046MR2135746
  20. [20] Rosenbljum G., The distribution of the discrete spectrum for singular differential operators, Soviet Math. Dokl.13 (1972) 245-249. Zbl0249.35069
  21. [21] Schechter M., Zou W., Infinitely many solutions to perturbed elliptic equations, J. Funct. Anal.228 (2005) 1-38. Zbl1139.35346MR2170983
  22. [22] Simon B., Functional Integration and Quantum Physics, Academic Press, 1979. Zbl0434.28013MR544188
  23. [23] Sirakov B., On the existence of solutions of Hamiltonian elliptic systems in R N , Adv. Differential Equations5 (2000) 1445-1464. Zbl1213.35223MR1785681
  24. [24] Struwe M., Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manuscripta Math.32 (1980) 335-364. Zbl0456.35031MR595426
  25. [25] Struwe M., Superlinear elliptic boundary value problems with rotational symmetry, Arch. Math. (Basel)39 (1982) 233-240. Zbl0496.35034MR682450
  26. [26] Tanaka K., Morse indices at critical points related to the symmetric mountain pass theorem and applications, Comm. Partial Differential Equations14 (1989) 99-128. Zbl0669.34035MR973271
  27. [27] Tarsi C., Perturbation from symmetry and multiplicity of solutions for strongly indefinite elliptic systems, Adv. Nonlinear Stud.7 (2007) 1-30. Zbl05182588MR2287525
  28. [28] Tehrani H.T., Infinitely many solutions for indefinite semilinear elliptic equations without symmetry, Comm. Partial Differential Equations21 (1996) 541-557. Zbl0855.35044MR1387459

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.