Hydrodynamic limits : some improvements of the relative entropy method
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 3, page 705-744
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSaint-Raymond, Laure. "Hydrodynamic limits : some improvements of the relative entropy method." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 705-744. <http://eudml.org/doc/78864>.
@article{Saint2009,
author = {Saint-Raymond, Laure},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {incompressible Euler equations; Boltzmann equation; hydrodynamic limits; relaxation layer; acoustic waves; relative entropy method},
language = {eng},
number = {3},
pages = {705-744},
publisher = {Elsevier},
title = {Hydrodynamic limits : some improvements of the relative entropy method},
url = {http://eudml.org/doc/78864},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Saint-Raymond, Laure
TI - Hydrodynamic limits : some improvements of the relative entropy method
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 705
EP - 744
LA - eng
KW - incompressible Euler equations; Boltzmann equation; hydrodynamic limits; relaxation layer; acoustic waves; relative entropy method
UR - http://eudml.org/doc/78864
ER -
References
top- [1] Aoki K., Sone Y., Steady gas flows past bodies at small Knudsen numbers – Boltzmann and hydrodynamic systems, Trans. Theory Stat. Phys.16 (1987) 189-199. Zbl0622.76082
- [2] Bardos C., Golse F., Levermore C.D., Fluid dynamic limits of the Boltzmann equation I, J. Stat. Phys.63 (1991) 323-344. Zbl0918.35109MR1115587
- [3] Bardos C., Golse F., Levermore C.D., Fluid dynamic limits of the Boltzmann equation II: Convergence proofs, Comm. Pure Appl. Math.46 (1993) 667-753. Zbl0817.76002MR1213991
- [4] Biryuk A., Craig W., Panferov V., Strong solutions of the Boltzmann equation in one spatial dimension, C. R. Acad. Sci. Paris342 (2006) 843-848. Zbl1096.35001MR2224633
- [5] Bouchut F., Golse F., Pulvirenti M., Desvillettes L., Perthame B. (Eds.), Kinetic Equations and Asymptotic Theory, Editions scientifiques et médicales Elsevier, Paris, 2000. MR2065070
- [6] Caflisch R., The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Commun. Math. Phys.74 (1980) 71-95. Zbl0434.76065MR575897
- [7] Cercignani C., Global weak solutions of the Boltzmann equation, J. Stat. Phys.118 (2005) 333-342. Zbl1097.82022MR2122558
- [8] Chapman S., Cowling T.G., The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, Cambridge University Press, New York, 1960. Zbl0726.76084MR116537JFM65.1541.01
- [9] Chemin J.-Y., Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998. Zbl0927.76002MR1688875
- [10] Chemin J.-Y., Desjardins B., Gallagher I., Grenier E., Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier–Stokes Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 32, The Clarendon Press, Oxford University Press, Oxford, 2006. Zbl1205.86001MR2228849
- [11] DeMasi A., Esposito R., Lebowitz J., Incompressible Navier–Stokes and Euler limits of the Boltzmann equation, Comm Pure Appl. Math.42 (1990) 1189-1214. Zbl0689.76024MR1029125
- [12] Desjardins B., Grenier E., Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.455 (1999) 2271-2279. Zbl0934.76080MR1702718
- [13] Di Perna R., Lions P.-L., On the Cauchy problem for the Boltzmann equation: global existence and weak stability results, Ann. of Math.130 (1990) 321-366. Zbl0698.45010MR1014927
- [14] Gallagher I., Saint-Raymond L., On the influence of the Earth's rotation on geophysical flows, in: Handbook of Mathematical Fluid Dynamics, vol. 4, Elsevier, 2007.
- [15] F. Golse, L. Saint-Raymond, The Navier–Stokes limit of the Boltzmann equation for hard potentials, submitted for publication. Zbl1178.35290
- [16] H. Grad, Asymptotic theory of the Boltzmann equation. II, in: Rarefied Gas Dynamics, vol. I, Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962, 1963, pp. 26–59. MR156656
- [17] Grenier E., Quelques Limites Singulières Oscillantes, Séminaire sur les Equations aux Dérivées Partielles, vol. 21, Ecole Polytech., Palaiseau, 1995. Zbl0873.35068MR1362569
- [18] Grenier E., On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math.53 (2000) 1067-1091. Zbl1048.35081MR1761409
- [19] Guo Y., The Vlasov–Poisson–Boltzmann system near Maxwellians, Comm. Pure Appl. Math.55 (2002) 1104-1135. Zbl1027.82035MR1908664
- [20] Guo Y., The Boltzmann equation in the whole space, Indiana Univ. Math. J.53 (2004) 1081-1094. Zbl1065.35090MR2095473
- [21] Hilbert D., Begründung der kinetischen Gastheorie, Math. Ann.72 (1912) 562-577. Zbl43.1055.03MR1511713JFM43.1055.03
- [22] Lions P.-L., Conditions at infinity for Boltzmann's equation, Comm. Partial Differential Equations19 (1994) 335-367. Zbl0799.35210MR1257008
- [23] Lions P.-L., Masmoudi N., From Boltzmann equation to the Navier–Stokes and Euler equations I, Arch. Ration Mech. Anal.158 (2001) 173-193. Zbl0987.76088MR1842343
- [24] Lions P.-L., Masmoudi N., Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris329 (1999) 387-392. Zbl0937.35132MR1710123
- [25] Masmoudi N., Ekman layers of rotating fluids: the case of general initial data, Commun. Pure Appl. Math.53 (2000) 432-483. Zbl1047.76124MR1733696
- [26] S. Mischler, Kinetic equations with Maxwell boundary condition, Preprint. Zbl1228.35249
- [27] Saint-Raymond L., Du modèle BGK de l'équation de Boltzmann aux équations d'Euler des fluides incompressibles, Bull. Sci. Math.126 (2002) 493-506. Zbl1023.76042MR1931626
- [28] Saint-Raymond L., Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal.166 (2003) 47-80. Zbl1016.76071MR1952079
- [29] L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, Lectures at SISSA, Trieste, Lecture Notes in Mathematics, Preprint. Zbl1171.82002
- [30] Schochet S., Fast singular limits of hyperbolic PDEs, J. Differential Equations114 (1994) 476-512. Zbl0838.35071MR1303036
- [31] Yau H.T., Relative entropy and hydrodynamics of Ginzburg–Landau models, Lett. Math. Phys.22 (1991) 63-80. Zbl0725.60120MR1121850
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.