Hydrodynamic limits : some improvements of the relative entropy method

Laure Saint-Raymond

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 705-744
  • ISSN: 0294-1449

How to cite

top

Saint-Raymond, Laure. "Hydrodynamic limits : some improvements of the relative entropy method." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 705-744. <http://eudml.org/doc/78864>.

@article{Saint2009,
author = {Saint-Raymond, Laure},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {incompressible Euler equations; Boltzmann equation; hydrodynamic limits; relaxation layer; acoustic waves; relative entropy method},
language = {eng},
number = {3},
pages = {705-744},
publisher = {Elsevier},
title = {Hydrodynamic limits : some improvements of the relative entropy method},
url = {http://eudml.org/doc/78864},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Saint-Raymond, Laure
TI - Hydrodynamic limits : some improvements of the relative entropy method
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 705
EP - 744
LA - eng
KW - incompressible Euler equations; Boltzmann equation; hydrodynamic limits; relaxation layer; acoustic waves; relative entropy method
UR - http://eudml.org/doc/78864
ER -

References

top
  1. [1] Aoki K., Sone Y., Steady gas flows past bodies at small Knudsen numbers – Boltzmann and hydrodynamic systems, Trans. Theory Stat. Phys.16 (1987) 189-199. Zbl0622.76082
  2. [2] Bardos C., Golse F., Levermore C.D., Fluid dynamic limits of the Boltzmann equation I, J. Stat. Phys.63 (1991) 323-344. Zbl0918.35109MR1115587
  3. [3] Bardos C., Golse F., Levermore C.D., Fluid dynamic limits of the Boltzmann equation II: Convergence proofs, Comm. Pure Appl. Math.46 (1993) 667-753. Zbl0817.76002MR1213991
  4. [4] Biryuk A., Craig W., Panferov V., Strong solutions of the Boltzmann equation in one spatial dimension, C. R. Acad. Sci. Paris342 (2006) 843-848. Zbl1096.35001MR2224633
  5. [5] Bouchut F., Golse F., Pulvirenti M., Desvillettes L., Perthame B. (Eds.), Kinetic Equations and Asymptotic Theory, Editions scientifiques et médicales Elsevier, Paris, 2000. MR2065070
  6. [6] Caflisch R., The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Commun. Math. Phys.74 (1980) 71-95. Zbl0434.76065MR575897
  7. [7] Cercignani C., Global weak solutions of the Boltzmann equation, J. Stat. Phys.118 (2005) 333-342. Zbl1097.82022MR2122558
  8. [8] Chapman S., Cowling T.G., The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, Cambridge University Press, New York, 1960. Zbl0726.76084MR116537JFM65.1541.01
  9. [9] Chemin J.-Y., Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998. Zbl0927.76002MR1688875
  10. [10] Chemin J.-Y., Desjardins B., Gallagher I., Grenier E., Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier–Stokes Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 32, The Clarendon Press, Oxford University Press, Oxford, 2006. Zbl1205.86001MR2228849
  11. [11] DeMasi A., Esposito R., Lebowitz J., Incompressible Navier–Stokes and Euler limits of the Boltzmann equation, Comm Pure Appl. Math.42 (1990) 1189-1214. Zbl0689.76024MR1029125
  12. [12] Desjardins B., Grenier E., Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.455 (1999) 2271-2279. Zbl0934.76080MR1702718
  13. [13] Di Perna R., Lions P.-L., On the Cauchy problem for the Boltzmann equation: global existence and weak stability results, Ann. of Math.130 (1990) 321-366. Zbl0698.45010MR1014927
  14. [14] Gallagher I., Saint-Raymond L., On the influence of the Earth's rotation on geophysical flows, in: Handbook of Mathematical Fluid Dynamics, vol. 4, Elsevier, 2007. 
  15. [15] F. Golse, L. Saint-Raymond, The Navier–Stokes limit of the Boltzmann equation for hard potentials, submitted for publication. Zbl1178.35290
  16. [16] H. Grad, Asymptotic theory of the Boltzmann equation. II, in: Rarefied Gas Dynamics, vol. I, Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962, 1963, pp. 26–59. MR156656
  17. [17] Grenier E., Quelques Limites Singulières Oscillantes, Séminaire sur les Equations aux Dérivées Partielles, vol. 21, Ecole Polytech., Palaiseau, 1995. Zbl0873.35068MR1362569
  18. [18] Grenier E., On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math.53 (2000) 1067-1091. Zbl1048.35081MR1761409
  19. [19] Guo Y., The Vlasov–Poisson–Boltzmann system near Maxwellians, Comm. Pure Appl. Math.55 (2002) 1104-1135. Zbl1027.82035MR1908664
  20. [20] Guo Y., The Boltzmann equation in the whole space, Indiana Univ. Math. J.53 (2004) 1081-1094. Zbl1065.35090MR2095473
  21. [21] Hilbert D., Begründung der kinetischen Gastheorie, Math. Ann.72 (1912) 562-577. Zbl43.1055.03MR1511713JFM43.1055.03
  22. [22] Lions P.-L., Conditions at infinity for Boltzmann's equation, Comm. Partial Differential Equations19 (1994) 335-367. Zbl0799.35210MR1257008
  23. [23] Lions P.-L., Masmoudi N., From Boltzmann equation to the Navier–Stokes and Euler equations I, Arch. Ration Mech. Anal.158 (2001) 173-193. Zbl0987.76088MR1842343
  24. [24] Lions P.-L., Masmoudi N., Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris329 (1999) 387-392. Zbl0937.35132MR1710123
  25. [25] Masmoudi N., Ekman layers of rotating fluids: the case of general initial data, Commun. Pure Appl. Math.53 (2000) 432-483. Zbl1047.76124MR1733696
  26. [26] S. Mischler, Kinetic equations with Maxwell boundary condition, Preprint. Zbl1228.35249
  27. [27] Saint-Raymond L., Du modèle BGK de l'équation de Boltzmann aux équations d'Euler des fluides incompressibles, Bull. Sci. Math.126 (2002) 493-506. Zbl1023.76042MR1931626
  28. [28] Saint-Raymond L., Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal.166 (2003) 47-80. Zbl1016.76071MR1952079
  29. [29] L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, Lectures at SISSA, Trieste, Lecture Notes in Mathematics, Preprint. Zbl1171.82002
  30. [30] Schochet S., Fast singular limits of hyperbolic PDEs, J. Differential Equations114 (1994) 476-512. Zbl0838.35071MR1303036
  31. [31] Yau H.T., Relative entropy and hydrodynamics of Ginzburg–Landau models, Lett. Math. Phys.22 (1991) 63-80. Zbl0725.60120MR1121850

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.