A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations

M. Boulakia; S. Guerrero

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 777-813
  • ISSN: 0294-1449

How to cite

top

Boulakia, M., and Guerrero, S.. "A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 777-813. <http://eudml.org/doc/78867>.

@article{Boulakia2009,
author = {Boulakia, M., Guerrero, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {fluid-structure interaction; compressible fluid; strong solutions; Navier-Stokes equations},
language = {eng},
number = {3},
pages = {777-813},
publisher = {Elsevier},
title = {A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations},
url = {http://eudml.org/doc/78867},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Boulakia, M.
AU - Guerrero, S.
TI - A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 777
EP - 813
LA - eng
KW - fluid-structure interaction; compressible fluid; strong solutions; Navier-Stokes equations
UR - http://eudml.org/doc/78867
ER -

References

top
  1. [1] Beirão da Veiga H., On the existence of strong solutions to a coupled fluid–structure evolution problem, J. Math. Fluid Mech.6 (1) (2004) 21-52. Zbl1068.35087MR2027753
  2. [2] Boulakia M., Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, J. Math. Pures Appl.84 (11) (2005) 1515-1554. Zbl1159.35395MR2181459
  3. [3] Boulakia M., Existence of weak solutions for the three dimensional motion of an elastic structure in an incompressible fluid, J. Math. Fluid Mech.9 (2) (2007) 262-294. Zbl1171.74337MR2329269
  4. [4] Chambolle A., Desjardins B., Esteban M.J., Grandmont C., Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech.7 (3) (2005) 368-404. Zbl1080.74024MR2166981
  5. [5] Conca C., San Martin J., Tucsnak M., Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations25 (5–6) (2000) 1019-1042. Zbl0954.35135MR1759801
  6. [6] Coutand D., Shkoller S., Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal.176 (1) (2005) 25-102. Zbl1064.74057MR2185858
  7. [7] Desjardins B., Esteban M.J., On weak solutions for fluid–rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations25 (7–8) (2000) 1399-1413. Zbl0953.35118MR1765138
  8. [8] Desjardins B., Esteban M.J., Grandmont C., Le Tallec P., Weak solutions for a fluid–elastic structure interaction model, Rev. Mat. Complut.14 (2) (2001) 523-538. Zbl1007.35055MR1871311
  9. [9] Feireisl E., Novotný A., Petzeltová H., On the existence of globally defined weak solutions to the Navier–Stokes equations, J. Math. Fluid Mech.3 (4) (2001) 358-392. Zbl0997.35043MR1867887
  10. [10] Feireisl E., On the motion of rigid bodies in a viscous compressible fluid, Arch. Ration. Mech. Anal.167 (4) (2003) 281-308. Zbl1090.76061MR1981859
  11. [11] Feireisl E., Dynamics of Viscous Compressible Fluids, Oxford Science Publications, Oxford, 2004. Zbl1080.76001MR2040667
  12. [12] Grandmont C., Maday Y., Existence for an unsteady fluid–structure interaction problem, M2AN Math. Model. Numer. Anal.34 (3) (2000) 609-636. Zbl0969.76017MR1763528
  13. [13] Hoff D., Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations120 (1) (1995) 215-254. Zbl0836.35120MR1339675
  14. [14] Hoff D., Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Ration. Mech. Anal.132 (1) (1995) 1-14. Zbl0836.76082MR1360077
  15. [15] Lions P.-L., Existence globale de solutions pour les équations de Navier–Stokes compressibles isentropiques, C. R. Acad. Sci. Paris Sér. I Math.316 (12) (1993) 1335-1340. Zbl0778.76086MR1226126
  16. [16] Lions P.L., Mathematical Topics in Fluid Mechanics, Oxford Science Publications, Oxford, 1996. Zbl0866.76002
  17. [17] Matsumura A., Nishida T., The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ.20 (1) (1980) 67-104. Zbl0429.76040MR564670
  18. [18] Matsumura A., Nishida T., Initial-boundary value problems for the equations of motion of general fluids, in: Computing Methods in Applied Sciences and Engineering, V, Versailles, 1981, North-Holland, Amsterdam, 1982, pp. 389-406. Zbl0505.76083MR784652
  19. [19] San Martin J., Starovoitov V., Tucsnak M., Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal.161 (2) (2002) 93-112. Zbl1018.76012MR1870954
  20. [20] Takahashi T., Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations8 (12) (2003) 1499-1532. Zbl1101.35356MR2029294
  21. [21] Tani A., On the first initial-boundary value problem of compressible viscous fluid motion, Publ. RIMS, Kyoto Univ.13 (1977) 193-253. Zbl0366.35070
  22. [22] Temam R., Navier–Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam, 1977. Zbl0383.35057MR609732
  23. [23] Zeidler E., Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems, Translated from the German by Peter R. Wadsack, Springer-Verlag, New York, 1986. Zbl0583.47050MR816732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.