On the complex structure of positive solutions to Matukuma-type equations
Patricio Felmer; Alexander Quaas; Moxun Tang
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 3, page 869-887
- ISSN: 0294-1449
Access Full Article
topHow to cite
topFelmer, Patricio, Quaas, Alexander, and Tang, Moxun. "On the complex structure of positive solutions to Matukuma-type equations." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 869-887. <http://eudml.org/doc/78871>.
@article{Felmer2009,
author = {Felmer, Patricio, Quaas, Alexander, Tang, Moxun},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {radial solutions; Matukuma equation; critical and subcritical exponent},
language = {eng},
number = {3},
pages = {869-887},
publisher = {Elsevier},
title = {On the complex structure of positive solutions to Matukuma-type equations},
url = {http://eudml.org/doc/78871},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Felmer, Patricio
AU - Quaas, Alexander
AU - Tang, Moxun
TI - On the complex structure of positive solutions to Matukuma-type equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 869
EP - 887
LA - eng
KW - radial solutions; Matukuma equation; critical and subcritical exponent
UR - http://eudml.org/doc/78871
ER -
References
top- [1] Bamón R., Flores I., del Pino M., Ground states of elliptic equations: a geometric approach, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 551-581. Zbl0988.35054MR1791878
- [2] Campos J., Bubble-tower phenomena in a semilinear equation with mixed Sobolev growth, Nonlinear Anal.68 (5) (2008) 1382-1397. Zbl1136.35028MR2381679
- [3] Erbe L., Tang M., Uniqueness of positive radial solutions of , Differential Integral Equations11 (4) (1998) 663-678. Zbl1131.35333MR1666214
- [4] Erbe L., Tang M., Structure of positive radial solutions of semilinear elliptic equations, J. Differential Equations133 (2) (1997) 179-202. Zbl0871.34023MR1427849
- [5] Felmer P., Quaas A., On Critical exponents for the Pucci's extremal operators, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (5) (2003) 843-865. Zbl1274.35115MR1995504
- [6] Flores I., A resonance phenomenon for ground states of an elliptic equation of Emden–Fowler type, J. Differential Equations198 (1) (2004) 1-15. Zbl1055.34031MR2037747
- [7] García-Huidobro M., Kufner A., Manásevich R., Yarur C., Radial solutions for a quasilinear equation via Hardy inequalities, Adv. Differential Equations6 (2001) 1517-1540. Zbl1140.35441MR1858431
- [8] García-Huidobro M., Manásevich R., Yarur C., On the structure of positive radial solutions to an equation containing a p-Laplacian with weight, J. Differential Equations223 (1) (2006) 51-95. Zbl1170.35404MR2210139
- [9] Kawano T., Yanagida E., Yotsutani S., Structure theorems for positive radial solutions to in , Funkcial. Ekvac.36 (1993) 121-145. Zbl0793.34024MR1255211
- [10] Li Y., On the positive solutions of the Matukuma equation, Duke Math. J.70 (3) (1993) 575-589. Zbl0801.35024MR1224099
- [11] Li Y., Ni W.-M., On the existence and symmetry properties of finite total mass solutions of the Matukuma equation, the Eddington equation and their generalizations, Arch. Rational Mech. Anal.108 (1989) 175-194. Zbl0705.35039MR1011557
- [12] Li Y., Ni W.-M., On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations I, Arch. Rational Mech. Anal.118 (1992) 195-222. Zbl0764.35013MR1158935
- [13] Li Y., Ni W.-M., On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations II, Arch. Rational Mech. Anal.118 (1992) 223-243. Zbl0764.35014MR1158936
- [14] Lin C.S., Ni W.-M., A counterexample to the nodal line conjecture and a related semi-linear equation, Proc. Amer. Math. Soc.102 (2) (1988) 271-277. Zbl0652.35085MR920985
- [15] Matukuma T., The Cosmos, Iwanami Shoten, Tokyo, 1938.
- [16] Morishita H., Yanagida E., Yotsutani S., Structural change of solutions for a scalar curvature equation, Differential Integral Equations14 (3) (2001) 273-288. Zbl1016.34024MR1799895
- [17] Ni W.-M., Nussbaum R., Uniqueness and non-uniqueness for positive radial solutions of , Comm. Pure Appl. Math.38 (1985) 69-108. Zbl0581.35021MR768105
- [18] Ni W.-M., Yotsutani S., Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math.5 (1988) 1-32. Zbl0655.35018MR924742
- [19] Tang M., Uniqueness and global structure of positive radial solutions for quasilinear elliptic equations, Comm. Partial Differential Equations26 (2001) 909-938. Zbl1010.35044MR1843289
- [20] Yanagida E., Structure of positive radial solutions of Matukuma type, Japan J. Ind. Appl. Math.8 (1991) 165-173. Zbl0735.35064MR1093835
- [21] Yanagida E., Yotsutani S., Classification of the structure of positive radial solutions to in , Arch. Rational Mech. Anal.124 (1993) 239-259. Zbl0819.35010MR1237912
- [22] Yanagida E., Yotsutani S., Existence of positive radial solutions to in , J. Differential Equations115 (1995) 477-502. Zbl0813.34036MR1310942
- [23] Yanagida E., Yotsutani S., Global structure of positive solutions to equations of Matukuma type, Arch. Rational Mech. Anal.134 (1996) 199-226. Zbl0862.35007MR1412427
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.