On the complex structure of positive solutions to Matukuma-type equations

Patricio Felmer; Alexander Quaas; Moxun Tang

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 3, page 869-887
  • ISSN: 0294-1449

How to cite

top

Felmer, Patricio, Quaas, Alexander, and Tang, Moxun. "On the complex structure of positive solutions to Matukuma-type equations." Annales de l'I.H.P. Analyse non linéaire 26.3 (2009): 869-887. <http://eudml.org/doc/78871>.

@article{Felmer2009,
author = {Felmer, Patricio, Quaas, Alexander, Tang, Moxun},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {radial solutions; Matukuma equation; critical and subcritical exponent},
language = {eng},
number = {3},
pages = {869-887},
publisher = {Elsevier},
title = {On the complex structure of positive solutions to Matukuma-type equations},
url = {http://eudml.org/doc/78871},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Felmer, Patricio
AU - Quaas, Alexander
AU - Tang, Moxun
TI - On the complex structure of positive solutions to Matukuma-type equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 3
SP - 869
EP - 887
LA - eng
KW - radial solutions; Matukuma equation; critical and subcritical exponent
UR - http://eudml.org/doc/78871
ER -

References

top
  1. [1] Bamón R., Flores I., del Pino M., Ground states of elliptic equations: a geometric approach, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 551-581. Zbl0988.35054MR1791878
  2. [2] Campos J., Bubble-tower phenomena in a semilinear equation with mixed Sobolev growth, Nonlinear Anal.68 (5) (2008) 1382-1397. Zbl1136.35028MR2381679
  3. [3] Erbe L., Tang M., Uniqueness of positive radial solutions of Δ u + K x γ u = 0 , Differential Integral Equations11 (4) (1998) 663-678. Zbl1131.35333MR1666214
  4. [4] Erbe L., Tang M., Structure of positive radial solutions of semilinear elliptic equations, J. Differential Equations133 (2) (1997) 179-202. Zbl0871.34023MR1427849
  5. [5] Felmer P., Quaas A., On Critical exponents for the Pucci's extremal operators, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (5) (2003) 843-865. Zbl1274.35115MR1995504
  6. [6] Flores I., A resonance phenomenon for ground states of an elliptic equation of Emden–Fowler type, J. Differential Equations198 (1) (2004) 1-15. Zbl1055.34031MR2037747
  7. [7] García-Huidobro M., Kufner A., Manásevich R., Yarur C., Radial solutions for a quasilinear equation via Hardy inequalities, Adv. Differential Equations6 (2001) 1517-1540. Zbl1140.35441MR1858431
  8. [8] García-Huidobro M., Manásevich R., Yarur C., On the structure of positive radial solutions to an equation containing a p-Laplacian with weight, J. Differential Equations223 (1) (2006) 51-95. Zbl1170.35404MR2210139
  9. [9] Kawano T., Yanagida E., Yotsutani S., Structure theorems for positive radial solutions to Δ u + K x u p = 0 in R N , Funkcial. Ekvac.36 (1993) 121-145. Zbl0793.34024MR1255211
  10. [10] Li Y., On the positive solutions of the Matukuma equation, Duke Math. J.70 (3) (1993) 575-589. Zbl0801.35024MR1224099
  11. [11] Li Y., Ni W.-M., On the existence and symmetry properties of finite total mass solutions of the Matukuma equation, the Eddington equation and their generalizations, Arch. Rational Mech. Anal.108 (1989) 175-194. Zbl0705.35039MR1011557
  12. [12] Li Y., Ni W.-M., On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations I, Arch. Rational Mech. Anal.118 (1992) 195-222. Zbl0764.35013MR1158935
  13. [13] Li Y., Ni W.-M., On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations II, Arch. Rational Mech. Anal.118 (1992) 223-243. Zbl0764.35014MR1158936
  14. [14] Lin C.S., Ni W.-M., A counterexample to the nodal line conjecture and a related semi-linear equation, Proc. Amer. Math. Soc.102 (2) (1988) 271-277. Zbl0652.35085MR920985
  15. [15] Matukuma T., The Cosmos, Iwanami Shoten, Tokyo, 1938. 
  16. [16] Morishita H., Yanagida E., Yotsutani S., Structural change of solutions for a scalar curvature equation, Differential Integral Equations14 (3) (2001) 273-288. Zbl1016.34024MR1799895
  17. [17] Ni W.-M., Nussbaum R., Uniqueness and non-uniqueness for positive radial solutions of Δ u + f ( r , u ) = 0 , Comm. Pure Appl. Math.38 (1985) 69-108. Zbl0581.35021MR768105
  18. [18] Ni W.-M., Yotsutani S., Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math.5 (1988) 1-32. Zbl0655.35018MR924742
  19. [19] Tang M., Uniqueness and global structure of positive radial solutions for quasilinear elliptic equations, Comm. Partial Differential Equations26 (2001) 909-938. Zbl1010.35044MR1843289
  20. [20] Yanagida E., Structure of positive radial solutions of Matukuma type, Japan J. Ind. Appl. Math.8 (1991) 165-173. Zbl0735.35064MR1093835
  21. [21] Yanagida E., Yotsutani S., Classification of the structure of positive radial solutions to Δ u + K x u p = 0 in R N , Arch. Rational Mech. Anal.124 (1993) 239-259. Zbl0819.35010MR1237912
  22. [22] Yanagida E., Yotsutani S., Existence of positive radial solutions to Δ u + K x u p = 0 in R N , J. Differential Equations115 (1995) 477-502. Zbl0813.34036MR1310942
  23. [23] Yanagida E., Yotsutani S., Global structure of positive solutions to equations of Matukuma type, Arch. Rational Mech. Anal.134 (1996) 199-226. Zbl0862.35007MR1412427

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.